1634 lines
63 KiB
C++
1634 lines
63 KiB
C++
#ifndef __GGML_EXTEND_HPP__
|
||
#define __GGML_EXTEND_HPP__
|
||
|
||
#include <assert.h>
|
||
#include <inttypes.h>
|
||
#include <stdarg.h>
|
||
#include <algorithm>
|
||
#include <cstring>
|
||
#include <fstream>
|
||
#include <functional>
|
||
#include <iostream>
|
||
#include <iterator>
|
||
#include <map>
|
||
#include <memory>
|
||
#include <random>
|
||
#include <regex>
|
||
#include <set>
|
||
#include <sstream>
|
||
#include <string>
|
||
#include <unordered_map>
|
||
#include <vector>
|
||
|
||
#include "ggml-alloc.h"
|
||
#include "ggml-backend.h"
|
||
#include "ggml-cpu.h"
|
||
#include "ggml.h"
|
||
|
||
#include "model.h"
|
||
|
||
#ifdef SD_USE_CUDA
|
||
#include "ggml-cuda.h"
|
||
#endif
|
||
|
||
#ifdef SD_USE_METAL
|
||
#include "ggml-metal.h"
|
||
#endif
|
||
|
||
#ifdef SD_USE_VULKAN
|
||
#include "ggml-vulkan.h"
|
||
#endif
|
||
|
||
#ifdef SD_USE_SYCL
|
||
#include "ggml-sycl.h"
|
||
#endif
|
||
|
||
#include "rng.hpp"
|
||
#include "util.h"
|
||
|
||
#define EPS 1e-05f
|
||
|
||
#ifndef __STATIC_INLINE__
|
||
#define __STATIC_INLINE__ static inline
|
||
#endif
|
||
|
||
// n-mode trensor-matrix product
|
||
// example: 2-mode product
|
||
// A: [ne03, k, ne01, ne00]
|
||
// B: k rows, m columns => [k, m]
|
||
// result is [ne03, m, ne01, ne00]
|
||
__STATIC_INLINE__ struct ggml_tensor* ggml_mul_n_mode(struct ggml_context* ctx, struct ggml_tensor* a, struct ggml_tensor* b, int mode = 0) {
|
||
// reshape A
|
||
// swap 0th and nth axis
|
||
a = ggml_cont(ctx, ggml_permute(ctx, a, mode, mode != 1 ? 1 : 0, mode != 2 ? 2 : 0, mode != 3 ? 3 : 0));
|
||
int ne1 = a->ne[1];
|
||
int ne2 = a->ne[2];
|
||
int ne3 = a->ne[3];
|
||
// make 2D
|
||
a = ggml_cont(ctx, ggml_reshape_2d(ctx, a, a->ne[0], (ne3 * ne2 * ne1)));
|
||
|
||
struct ggml_tensor* result = ggml_cont(ctx, ggml_transpose(ctx, ggml_mul_mat(ctx, a, b)));
|
||
|
||
// reshape output (same shape as a after permutation except first dim)
|
||
result = ggml_reshape_4d(ctx, result, result->ne[0], ne1, ne2, ne3);
|
||
// swap back 0th and nth axis
|
||
result = ggml_permute(ctx, result, mode, mode != 1 ? 1 : 0, mode != 2 ? 2 : 0, mode != 3 ? 3 : 0);
|
||
return result;
|
||
}
|
||
|
||
__STATIC_INLINE__ struct ggml_tensor* ggml_merge_lora(ggml_context* ctx, struct ggml_tensor* lora_down, struct ggml_tensor* lora_up, struct ggml_tensor* lora_mid = NULL) {
|
||
struct ggml_tensor* updown;
|
||
// flat lora tensors to multiply it
|
||
int64_t lora_up_rows = lora_up->ne[ggml_n_dims(lora_up) - 1];
|
||
lora_up = ggml_reshape_2d(ctx, lora_up, ggml_nelements(lora_up) / lora_up_rows, lora_up_rows);
|
||
auto lora_down_n_dims = ggml_n_dims(lora_down);
|
||
// assume n_dims should always be a multiple of 2 (otherwise rank 1 doesn't work)
|
||
lora_down_n_dims = (lora_down_n_dims + lora_down_n_dims % 2);
|
||
int64_t lora_down_rows = lora_down->ne[lora_down_n_dims - 1];
|
||
lora_down = ggml_reshape_2d(ctx, lora_down, ggml_nelements(lora_down) / lora_down_rows, lora_down_rows);
|
||
|
||
// ggml_mul_mat requires tensor b transposed
|
||
lora_down = ggml_cont(ctx, ggml_transpose(ctx, lora_down));
|
||
if (lora_mid == NULL) {
|
||
updown = ggml_mul_mat(ctx, lora_up, lora_down);
|
||
updown = ggml_cont(ctx, ggml_transpose(ctx, updown));
|
||
} else {
|
||
// undoing tucker decomposition for conv layers.
|
||
// lora_mid has shape (3, 3, Rank, Rank)
|
||
// lora_down has shape (Rank, In, 1, 1)
|
||
// lora_up has shape (Rank, Out, 1, 1)
|
||
// conv layer shape is (3, 3, Out, In)
|
||
updown = ggml_mul_n_mode(ctx, ggml_mul_n_mode(ctx, lora_mid, lora_down, 3), lora_up, 2);
|
||
updown = ggml_cont(ctx, updown);
|
||
}
|
||
return updown;
|
||
}
|
||
|
||
// Kronecker product
|
||
// [ne03,ne02,ne01,ne00] x [ne13,ne12,ne11,ne10] => [ne03*ne13,ne02*ne12,ne01*ne11,ne00*ne10]
|
||
__STATIC_INLINE__ struct ggml_tensor* ggml_kronecker(ggml_context* ctx, struct ggml_tensor* a, struct ggml_tensor* b) {
|
||
return ggml_mul(ctx,
|
||
ggml_upscale_ext(ctx,
|
||
a,
|
||
a->ne[0] * b->ne[0],
|
||
a->ne[1] * b->ne[1],
|
||
a->ne[2] * b->ne[2],
|
||
a->ne[3] * b->ne[3]),
|
||
b);
|
||
}
|
||
|
||
__STATIC_INLINE__ void ggml_log_callback_default(ggml_log_level level, const char* text, void* user_data) {
|
||
(void)level;
|
||
(void)user_data;
|
||
fputs(text, stderr);
|
||
fflush(stderr);
|
||
}
|
||
|
||
__STATIC_INLINE__ void ggml_tensor_set_f32_randn(struct ggml_tensor* tensor, std::shared_ptr<RNG> rng) {
|
||
uint32_t n = (uint32_t)ggml_nelements(tensor);
|
||
std::vector<float> random_numbers = rng->randn(n);
|
||
for (uint32_t i = 0; i < n; i++) {
|
||
ggml_set_f32_1d(tensor, i, random_numbers[i]);
|
||
}
|
||
}
|
||
|
||
// set tensor[i, j, k, l]
|
||
// set tensor[l]
|
||
// set tensor[k, l]
|
||
// set tensor[j, k, l]
|
||
__STATIC_INLINE__ void ggml_tensor_set_f32(struct ggml_tensor* tensor, float value, int l, int k = 0, int j = 0, int i = 0) {
|
||
GGML_ASSERT(tensor->nb[0] == sizeof(float));
|
||
*(float*)((char*)(tensor->data) + i * tensor->nb[3] + j * tensor->nb[2] + k * tensor->nb[1] + l * tensor->nb[0]) = value;
|
||
}
|
||
|
||
__STATIC_INLINE__ float ggml_tensor_get_f32(const ggml_tensor* tensor, int l, int k = 0, int j = 0, int i = 0) {
|
||
if (tensor->buffer != NULL) {
|
||
float value;
|
||
ggml_backend_tensor_get(tensor, &value, i * tensor->nb[3] + j * tensor->nb[2] + k * tensor->nb[1] + l * tensor->nb[0], sizeof(float));
|
||
return value;
|
||
}
|
||
GGML_ASSERT(tensor->nb[0] == sizeof(float));
|
||
return *(float*)((char*)(tensor->data) + i * tensor->nb[3] + j * tensor->nb[2] + k * tensor->nb[1] + l * tensor->nb[0]);
|
||
}
|
||
|
||
__STATIC_INLINE__ int ggml_tensor_get_i32(const ggml_tensor* tensor, int l, int k = 0, int j = 0, int i = 0) {
|
||
if (tensor->buffer != NULL) {
|
||
float value;
|
||
ggml_backend_tensor_get(tensor, &value, i * tensor->nb[3] + j * tensor->nb[2] + k * tensor->nb[1] + l * tensor->nb[0], sizeof(int));
|
||
return value;
|
||
}
|
||
GGML_ASSERT(tensor->nb[0] == sizeof(int));
|
||
return *(int*)((char*)(tensor->data) + i * tensor->nb[3] + j * tensor->nb[2] + k * tensor->nb[1] + l * tensor->nb[0]);
|
||
}
|
||
|
||
__STATIC_INLINE__ ggml_fp16_t ggml_tensor_get_f16(const ggml_tensor* tensor, int l, int k = 0, int j = 0, int i = 0) {
|
||
GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
|
||
return *(ggml_fp16_t*)((char*)(tensor->data) + i * tensor->nb[3] + j * tensor->nb[2] + k * tensor->nb[1] + l * tensor->nb[0]);
|
||
}
|
||
|
||
static struct ggml_tensor* get_tensor_from_graph(struct ggml_cgraph* gf, const char* name) {
|
||
struct ggml_tensor* res = NULL;
|
||
for (int i = 0; i < ggml_graph_n_nodes(gf); i++) {
|
||
struct ggml_tensor* node = ggml_graph_node(gf, i);
|
||
// printf("%d, %s \n", i, ggml_get_name(node));
|
||
if (strcmp(ggml_get_name(node), name) == 0) {
|
||
res = node;
|
||
break;
|
||
}
|
||
}
|
||
return res;
|
||
}
|
||
|
||
__STATIC_INLINE__ void print_ggml_tensor(struct ggml_tensor* tensor, bool shape_only = false, const char* mark = "") {
|
||
printf("%s (%s): shape(%zu, %zu, %zu, %zu)\n", mark, ggml_type_name(tensor->type), tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]);
|
||
fflush(stdout);
|
||
if (shape_only) {
|
||
return;
|
||
}
|
||
int range = 3;
|
||
for (int i = 0; i < tensor->ne[3]; i++) {
|
||
if (i >= range && i + range < tensor->ne[3]) {
|
||
continue;
|
||
}
|
||
for (int j = 0; j < tensor->ne[2]; j++) {
|
||
if (j >= range && j + range < tensor->ne[2]) {
|
||
continue;
|
||
}
|
||
for (int k = 0; k < tensor->ne[1]; k++) {
|
||
if (k >= range && k + range < tensor->ne[1]) {
|
||
continue;
|
||
}
|
||
for (int l = 0; l < tensor->ne[0]; l++) {
|
||
if (l >= range && l + range < tensor->ne[0]) {
|
||
continue;
|
||
}
|
||
if (tensor->type == GGML_TYPE_F32) {
|
||
printf(" [%d, %d, %d, %d] = %f\n", i, j, k, l, ggml_tensor_get_f32(tensor, l, k, j, i));
|
||
} else if (tensor->type == GGML_TYPE_F16) {
|
||
printf(" [%d, %d, %d, %d] = %i\n", i, j, k, l, ggml_tensor_get_f16(tensor, l, k, j, i));
|
||
} else if (tensor->type == GGML_TYPE_I32) {
|
||
printf(" [%d, %d, %d, %d] = %i\n", i, j, k, l, ggml_tensor_get_i32(tensor, l, k, j, i));
|
||
}
|
||
fflush(stdout);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
__STATIC_INLINE__ ggml_tensor* load_tensor_from_file(ggml_context* ctx, const std::string& file_path) {
|
||
std::ifstream file(file_path, std::ios::binary);
|
||
if (!file.is_open()) {
|
||
LOG_ERROR("failed to open '%s'", file_path.c_str());
|
||
return NULL;
|
||
}
|
||
int32_t n_dims;
|
||
int32_t length;
|
||
int32_t ttype;
|
||
|
||
file.read(reinterpret_cast<char*>(&n_dims), sizeof(n_dims));
|
||
file.read(reinterpret_cast<char*>(&length), sizeof(length));
|
||
file.read(reinterpret_cast<char*>(&ttype), sizeof(ttype));
|
||
|
||
if (file.eof()) {
|
||
LOG_ERROR("incomplete file '%s'", file_path.c_str());
|
||
return NULL;
|
||
}
|
||
|
||
int32_t nelements = 1;
|
||
int32_t ne[4] = {1, 1, 1, 1};
|
||
for (int i = 0; i < n_dims; ++i) {
|
||
file.read(reinterpret_cast<char*>(&ne[i]), sizeof(ne[i]));
|
||
nelements *= ne[i];
|
||
}
|
||
std::string name(length, 0);
|
||
file.read(&name[0], length);
|
||
ggml_tensor* tensor = ggml_new_tensor_4d(ctx, (ggml_type)ttype, ne[0], ne[1], ne[2], ne[3]);
|
||
const size_t bpe = ggml_type_size(ggml_type(ttype));
|
||
file.read(reinterpret_cast<char*>(tensor->data), ggml_nbytes(tensor));
|
||
return tensor;
|
||
}
|
||
|
||
// __STATIC_INLINE__ void save_tensor_to_file(const std::string& file_name, ggml_tensor* tensor, const std::string & name) {
|
||
// std::string file_name_ = file_name + ".tensor";
|
||
// std::string name_ = name;
|
||
// std::ofstream file("./" + file_name_, std::ios::binary);
|
||
// file.write(reinterpret_cast<char*>(&tensor->n_dims), sizeof(tensor->n_dims));
|
||
// int len = (int)name_.size();
|
||
// file.write(reinterpret_cast<char*>(&len), sizeof(len));
|
||
// int ttype = (int)tensor->type;
|
||
// file.write(reinterpret_cast<char*>(&ttype), sizeof(ttype));
|
||
// for (int i = 0; i < tensor->n_dims; ++i) {
|
||
// int ne_ = (int) tensor->ne[i];
|
||
// file.write(reinterpret_cast<char*>(&ne_), sizeof(ne_));
|
||
// }
|
||
// file.write(&name_[0], len);
|
||
// char* data = nullptr;
|
||
// file.write((char*)tensor->data, ggml_nbytes(tensor));
|
||
// file.close();
|
||
// }
|
||
|
||
__STATIC_INLINE__ void copy_ggml_tensor(struct ggml_tensor* dst, struct ggml_tensor* src) {
|
||
if (dst->type == src->type) {
|
||
dst->nb[0] = src->nb[0];
|
||
dst->nb[1] = src->nb[1];
|
||
dst->nb[2] = src->nb[2];
|
||
dst->nb[3] = src->nb[3];
|
||
|
||
memcpy(((char*)dst->data), ((char*)src->data), ggml_nbytes(dst));
|
||
return;
|
||
}
|
||
struct ggml_init_params params;
|
||
params.mem_size = 10 * 1024 * 1024; // for padding
|
||
params.mem_buffer = NULL;
|
||
params.no_alloc = false;
|
||
struct ggml_context* ctx = ggml_init(params);
|
||
if (!ctx) {
|
||
LOG_ERROR("ggml_init() failed");
|
||
return;
|
||
}
|
||
ggml_tensor* final = ggml_cpy(ctx, src, dst);
|
||
|
||
struct ggml_cgraph* graph = ggml_new_graph(ctx);
|
||
ggml_build_forward_expand(graph, final);
|
||
ggml_graph_compute_with_ctx(ctx, graph, 1);
|
||
ggml_free(ctx);
|
||
}
|
||
|
||
__STATIC_INLINE__ float sigmoid(float x) {
|
||
return 1 / (1.0f + expf(-x));
|
||
}
|
||
|
||
// SPECIAL OPERATIONS WITH TENSORS
|
||
|
||
__STATIC_INLINE__ uint8_t* sd_tensor_to_image(struct ggml_tensor* input) {
|
||
int64_t width = input->ne[0];
|
||
int64_t height = input->ne[1];
|
||
int64_t channels = input->ne[2];
|
||
GGML_ASSERT(channels == 3 && input->type == GGML_TYPE_F32);
|
||
uint8_t* image_data = (uint8_t*)malloc(width * height * channels);
|
||
for (int iy = 0; iy < height; iy++) {
|
||
for (int ix = 0; ix < width; ix++) {
|
||
for (int k = 0; k < channels; k++) {
|
||
float value = ggml_tensor_get_f32(input, ix, iy, k);
|
||
*(image_data + iy * width * channels + ix * channels + k) = (uint8_t)(value * 255.0f);
|
||
}
|
||
}
|
||
}
|
||
return image_data;
|
||
}
|
||
|
||
__STATIC_INLINE__ uint8_t* sd_tensor_to_mul_image(struct ggml_tensor* input, int idx) {
|
||
int64_t width = input->ne[0];
|
||
int64_t height = input->ne[1];
|
||
int64_t channels = input->ne[2];
|
||
GGML_ASSERT(channels == 3 && input->type == GGML_TYPE_F32);
|
||
uint8_t* image_data = (uint8_t*)malloc(width * height * channels);
|
||
for (int iy = 0; iy < height; iy++) {
|
||
for (int ix = 0; ix < width; ix++) {
|
||
for (int k = 0; k < channels; k++) {
|
||
float value = ggml_tensor_get_f32(input, ix, iy, k, idx);
|
||
*(image_data + iy * width * channels + ix * channels + k) = (uint8_t)(value * 255.0f);
|
||
}
|
||
}
|
||
}
|
||
return image_data;
|
||
}
|
||
|
||
__STATIC_INLINE__ void sd_image_to_tensor(const uint8_t* image_data,
|
||
struct ggml_tensor* output,
|
||
bool scale = true) {
|
||
int64_t width = output->ne[0];
|
||
int64_t height = output->ne[1];
|
||
int64_t channels = output->ne[2];
|
||
GGML_ASSERT(channels == 3 && output->type == GGML_TYPE_F32);
|
||
for (int iy = 0; iy < height; iy++) {
|
||
for (int ix = 0; ix < width; ix++) {
|
||
for (int k = 0; k < channels; k++) {
|
||
float value = *(image_data + iy * width * channels + ix * channels + k);
|
||
if (scale) {
|
||
value /= 255.f;
|
||
}
|
||
ggml_tensor_set_f32(output, value, ix, iy, k);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
__STATIC_INLINE__ void sd_mask_to_tensor(const uint8_t* image_data,
|
||
struct ggml_tensor* output,
|
||
bool scale = true) {
|
||
int64_t width = output->ne[0];
|
||
int64_t height = output->ne[1];
|
||
int64_t channels = output->ne[2];
|
||
GGML_ASSERT(channels == 1 && output->type == GGML_TYPE_F32);
|
||
for (int iy = 0; iy < height; iy++) {
|
||
for (int ix = 0; ix < width; ix++) {
|
||
float value = *(image_data + iy * width * channels + ix);
|
||
if (scale) {
|
||
value /= 255.f;
|
||
}
|
||
ggml_tensor_set_f32(output, value, ix, iy);
|
||
}
|
||
}
|
||
}
|
||
|
||
__STATIC_INLINE__ void sd_apply_mask(struct ggml_tensor* image_data,
|
||
struct ggml_tensor* mask,
|
||
struct ggml_tensor* output) {
|
||
int64_t width = output->ne[0];
|
||
int64_t height = output->ne[1];
|
||
int64_t channels = output->ne[2];
|
||
GGML_ASSERT(output->type == GGML_TYPE_F32);
|
||
for (int ix = 0; ix < width; ix++) {
|
||
for (int iy = 0; iy < height; iy++) {
|
||
float m = ggml_tensor_get_f32(mask, ix, iy);
|
||
m = round(m); // inpaint models need binary masks
|
||
ggml_tensor_set_f32(mask, m, ix, iy);
|
||
for (int k = 0; k < channels; k++) {
|
||
float value = (1 - m) * (ggml_tensor_get_f32(image_data, ix, iy, k) - .5) + .5;
|
||
ggml_tensor_set_f32(output, value, ix, iy, k);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
__STATIC_INLINE__ void sd_mul_images_to_tensor(const uint8_t* image_data,
|
||
struct ggml_tensor* output,
|
||
int idx,
|
||
float* mean = NULL,
|
||
float* std = NULL) {
|
||
int64_t width = output->ne[0];
|
||
int64_t height = output->ne[1];
|
||
int64_t channels = output->ne[2];
|
||
GGML_ASSERT(channels == 3 && output->type == GGML_TYPE_F32);
|
||
for (int iy = 0; iy < height; iy++) {
|
||
for (int ix = 0; ix < width; ix++) {
|
||
for (int k = 0; k < channels; k++) {
|
||
int value = *(image_data + iy * width * channels + ix * channels + k);
|
||
float pixel_val = value / 255.0f;
|
||
if (mean != NULL && std != NULL)
|
||
pixel_val = (pixel_val - mean[k]) / std[k];
|
||
ggml_tensor_set_f32(output, pixel_val, ix, iy, k, idx);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
__STATIC_INLINE__ void sd_image_f32_to_tensor(const float* image_data,
|
||
struct ggml_tensor* output,
|
||
bool scale = true) {
|
||
int64_t width = output->ne[0];
|
||
int64_t height = output->ne[1];
|
||
int64_t channels = output->ne[2];
|
||
GGML_ASSERT(channels == 3 && output->type == GGML_TYPE_F32);
|
||
for (int iy = 0; iy < height; iy++) {
|
||
for (int ix = 0; ix < width; ix++) {
|
||
for (int k = 0; k < channels; k++) {
|
||
int value = *(image_data + iy * width * channels + ix * channels + k);
|
||
if (scale) {
|
||
value /= 255.f;
|
||
}
|
||
ggml_tensor_set_f32(output, value, ix, iy, k);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
__STATIC_INLINE__ void ggml_split_tensor_2d(struct ggml_tensor* input,
|
||
struct ggml_tensor* output,
|
||
int x,
|
||
int y) {
|
||
int64_t width = output->ne[0];
|
||
int64_t height = output->ne[1];
|
||
int64_t channels = output->ne[2];
|
||
GGML_ASSERT(input->type == GGML_TYPE_F32 && output->type == GGML_TYPE_F32);
|
||
for (int iy = 0; iy < height; iy++) {
|
||
for (int ix = 0; ix < width; ix++) {
|
||
for (int k = 0; k < channels; k++) {
|
||
float value = ggml_tensor_get_f32(input, ix + x, iy + y, k);
|
||
ggml_tensor_set_f32(output, value, ix, iy, k);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// unclamped -> expects x in the range [0-1]
|
||
__STATIC_INLINE__ float ggml_smootherstep_f32(const float x) {
|
||
GGML_ASSERT(x >= 0.f && x <= 1.f);
|
||
return x * x * x * (x * (6.0f * x - 15.0f) + 10.0f);
|
||
}
|
||
|
||
__STATIC_INLINE__ void ggml_merge_tensor_2d(struct ggml_tensor* input,
|
||
struct ggml_tensor* output,
|
||
int x,
|
||
int y,
|
||
int overlap) {
|
||
int64_t width = input->ne[0];
|
||
int64_t height = input->ne[1];
|
||
int64_t channels = input->ne[2];
|
||
|
||
int64_t img_width = output->ne[0];
|
||
int64_t img_height = output->ne[1];
|
||
|
||
GGML_ASSERT(input->type == GGML_TYPE_F32 && output->type == GGML_TYPE_F32);
|
||
for (int iy = 0; iy < height; iy++) {
|
||
for (int ix = 0; ix < width; ix++) {
|
||
for (int k = 0; k < channels; k++) {
|
||
float new_value = ggml_tensor_get_f32(input, ix, iy, k);
|
||
if (overlap > 0) { // blend colors in overlapped area
|
||
float old_value = ggml_tensor_get_f32(output, x + ix, y + iy, k);
|
||
|
||
const float x_f_0 = (x > 0) ? ix / float(overlap) : 1;
|
||
const float x_f_1 = (x < (img_width - width)) ? (width - ix) / float(overlap) : 1;
|
||
const float y_f_0 = (y > 0) ? iy / float(overlap) : 1;
|
||
const float y_f_1 = (y < (img_height - height)) ? (height - iy) / float(overlap) : 1;
|
||
|
||
const float x_f = std::min(std::min(x_f_0, x_f_1), 1.f);
|
||
const float y_f = std::min(std::min(y_f_0, y_f_1), 1.f);
|
||
|
||
ggml_tensor_set_f32(
|
||
output,
|
||
old_value + new_value * ggml_smootherstep_f32(y_f) * ggml_smootherstep_f32(x_f),
|
||
x + ix, y + iy, k);
|
||
} else {
|
||
ggml_tensor_set_f32(output, new_value, x + ix, y + iy, k);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
__STATIC_INLINE__ float ggml_tensor_mean(struct ggml_tensor* src) {
|
||
float mean = 0.0f;
|
||
int64_t nelements = ggml_nelements(src);
|
||
float* data = (float*)src->data;
|
||
for (int i = 0; i < nelements; i++) {
|
||
mean += data[i] / nelements * 1.0f;
|
||
}
|
||
return mean;
|
||
}
|
||
|
||
// a = a+b
|
||
__STATIC_INLINE__ void ggml_tensor_add(struct ggml_tensor* a, struct ggml_tensor* b) {
|
||
GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
|
||
int64_t nelements = ggml_nelements(a);
|
||
float* vec_a = (float*)a->data;
|
||
float* vec_b = (float*)b->data;
|
||
for (int i = 0; i < nelements; i++) {
|
||
vec_a[i] = vec_a[i] + vec_b[i];
|
||
}
|
||
}
|
||
|
||
__STATIC_INLINE__ void ggml_tensor_scale(struct ggml_tensor* src, float scale) {
|
||
int64_t nelements = ggml_nelements(src);
|
||
float* data = (float*)src->data;
|
||
for (int i = 0; i < nelements; i++) {
|
||
data[i] = data[i] * scale;
|
||
}
|
||
}
|
||
|
||
__STATIC_INLINE__ void ggml_tensor_clamp(struct ggml_tensor* src, float min, float max) {
|
||
int64_t nelements = ggml_nelements(src);
|
||
float* data = (float*)src->data;
|
||
for (int i = 0; i < nelements; i++) {
|
||
float val = data[i];
|
||
data[i] = val < min ? min : (val > max ? max : val);
|
||
}
|
||
}
|
||
|
||
__STATIC_INLINE__ struct ggml_tensor* ggml_tensor_concat(struct ggml_context* ctx,
|
||
struct ggml_tensor* a,
|
||
struct ggml_tensor* b,
|
||
int dim) {
|
||
int64_t ne[GGML_MAX_DIMS];
|
||
for (int d = 0; d < GGML_MAX_DIMS; ++d) {
|
||
if (d == dim) {
|
||
ne[d] = a->ne[d] + b->ne[d];
|
||
continue;
|
||
}
|
||
GGML_ASSERT(a->ne[d] == b->ne[d]);
|
||
ne[d] = a->ne[d];
|
||
}
|
||
struct ggml_tensor* result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
|
||
int64_t o[4] = {0, 0, 0, 0};
|
||
o[dim] = a->ne[dim];
|
||
|
||
float v;
|
||
for (int i3 = 0; i3 < result->ne[3]; i3++) {
|
||
for (int i2 = 0; i2 < result->ne[2]; i2++) {
|
||
for (int i1 = 0; i1 < result->ne[1]; i1++) {
|
||
for (int i0 = 0; i0 < result->ne[0]; i0++) {
|
||
if (i0 < a->ne[0] && i1 < a->ne[1] && i2 < a->ne[2] && i3 < a->ne[3]) {
|
||
v = ggml_tensor_get_f32(a, i0, i1, i2, i3);
|
||
} else {
|
||
v = ggml_tensor_get_f32(b, i0 - o[0], i1 - o[1], i2 - o[2], i3 - o[3]);
|
||
}
|
||
|
||
ggml_tensor_set_f32(result, v, i0, i1, i2, i3);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
return result;
|
||
}
|
||
|
||
// convert values from [0, 1] to [-1, 1]
|
||
__STATIC_INLINE__ void ggml_tensor_scale_input(struct ggml_tensor* src) {
|
||
int64_t nelements = ggml_nelements(src);
|
||
float* data = (float*)src->data;
|
||
for (int i = 0; i < nelements; i++) {
|
||
float val = data[i];
|
||
data[i] = val * 2.0f - 1.0f;
|
||
}
|
||
}
|
||
|
||
// convert values from [-1, 1] to [0, 1]
|
||
__STATIC_INLINE__ void ggml_tensor_scale_output(struct ggml_tensor* src) {
|
||
int64_t nelements = ggml_nelements(src);
|
||
float* data = (float*)src->data;
|
||
for (int i = 0; i < nelements; i++) {
|
||
float val = data[i];
|
||
data[i] = (val + 1.0f) * 0.5f;
|
||
}
|
||
}
|
||
|
||
typedef std::function<void(ggml_tensor*, ggml_tensor*, bool)> on_tile_process;
|
||
|
||
// Tiling
|
||
__STATIC_INLINE__ void sd_tiling(ggml_tensor* input, ggml_tensor* output, const int scale, const int tile_size, const float tile_overlap_factor, on_tile_process on_processing) {
|
||
int input_width = (int)input->ne[0];
|
||
int input_height = (int)input->ne[1];
|
||
int output_width = (int)output->ne[0];
|
||
int output_height = (int)output->ne[1];
|
||
GGML_ASSERT(input_width % 2 == 0 && input_height % 2 == 0 && output_width % 2 == 0 && output_height % 2 == 0); // should be multiple of 2
|
||
|
||
int tile_overlap = (int32_t)(tile_size * tile_overlap_factor);
|
||
int non_tile_overlap = tile_size - tile_overlap;
|
||
|
||
struct ggml_init_params params = {};
|
||
params.mem_size += tile_size * tile_size * input->ne[2] * sizeof(float); // input chunk
|
||
params.mem_size += (tile_size * scale) * (tile_size * scale) * output->ne[2] * sizeof(float); // output chunk
|
||
params.mem_size += 3 * ggml_tensor_overhead();
|
||
params.mem_buffer = NULL;
|
||
params.no_alloc = false;
|
||
|
||
LOG_DEBUG("tile work buffer size: %.2f MB", params.mem_size / 1024.f / 1024.f);
|
||
|
||
// draft context
|
||
struct ggml_context* tiles_ctx = ggml_init(params);
|
||
if (!tiles_ctx) {
|
||
LOG_ERROR("ggml_init() failed");
|
||
return;
|
||
}
|
||
|
||
// tiling
|
||
ggml_tensor* input_tile = ggml_new_tensor_4d(tiles_ctx, GGML_TYPE_F32, tile_size, tile_size, input->ne[2], 1);
|
||
ggml_tensor* output_tile = ggml_new_tensor_4d(tiles_ctx, GGML_TYPE_F32, tile_size * scale, tile_size * scale, output->ne[2], 1);
|
||
on_processing(input_tile, NULL, true);
|
||
int num_tiles = ceil((float)input_width / non_tile_overlap) * ceil((float)input_height / non_tile_overlap);
|
||
LOG_INFO("processing %i tiles", num_tiles);
|
||
pretty_progress(1, num_tiles, 0.0f);
|
||
int tile_count = 1;
|
||
bool last_y = false, last_x = false;
|
||
float last_time = 0.0f;
|
||
for (int y = 0; y < input_height && !last_y; y += non_tile_overlap) {
|
||
if (y + tile_size >= input_height) {
|
||
y = input_height - tile_size;
|
||
last_y = true;
|
||
}
|
||
for (int x = 0; x < input_width && !last_x; x += non_tile_overlap) {
|
||
if (x + tile_size >= input_width) {
|
||
x = input_width - tile_size;
|
||
last_x = true;
|
||
}
|
||
int64_t t1 = ggml_time_ms();
|
||
ggml_split_tensor_2d(input, input_tile, x, y);
|
||
on_processing(input_tile, output_tile, false);
|
||
ggml_merge_tensor_2d(output_tile, output, x * scale, y * scale, tile_overlap * scale);
|
||
int64_t t2 = ggml_time_ms();
|
||
last_time = (t2 - t1) / 1000.0f;
|
||
pretty_progress(tile_count, num_tiles, last_time);
|
||
tile_count++;
|
||
}
|
||
last_x = false;
|
||
}
|
||
if (tile_count < num_tiles) {
|
||
pretty_progress(num_tiles, num_tiles, last_time);
|
||
}
|
||
ggml_free(tiles_ctx);
|
||
}
|
||
|
||
__STATIC_INLINE__ struct ggml_tensor* ggml_group_norm_32(struct ggml_context* ctx,
|
||
struct ggml_tensor* a) {
|
||
const float eps = 1e-6f; // default eps parameter
|
||
return ggml_group_norm(ctx, a, 32, eps);
|
||
}
|
||
|
||
__STATIC_INLINE__ struct ggml_tensor* ggml_nn_linear(struct ggml_context* ctx,
|
||
struct ggml_tensor* x,
|
||
struct ggml_tensor* w,
|
||
struct ggml_tensor* b) {
|
||
x = ggml_mul_mat(ctx, w, x);
|
||
if (b != NULL) {
|
||
x = ggml_add(ctx, x, b);
|
||
}
|
||
return x;
|
||
}
|
||
|
||
// w: [OC,IC, KH, KW]
|
||
// x: [N, IC, IH, IW]
|
||
// b: [OC,]
|
||
// result: [N, OC, OH, OW]
|
||
__STATIC_INLINE__ struct ggml_tensor* ggml_nn_conv_2d(struct ggml_context* ctx,
|
||
struct ggml_tensor* x,
|
||
struct ggml_tensor* w,
|
||
struct ggml_tensor* b,
|
||
int s0 = 1,
|
||
int s1 = 1,
|
||
int p0 = 0,
|
||
int p1 = 0,
|
||
int d0 = 1,
|
||
int d1 = 1) {
|
||
x = ggml_conv_2d(ctx, w, x, s0, s1, p0, p1, d0, d1);
|
||
if (b != NULL) {
|
||
b = ggml_reshape_4d(ctx, b, 1, 1, b->ne[0], 1);
|
||
// b = ggml_repeat(ctx, b, x);
|
||
x = ggml_add(ctx, x, b);
|
||
}
|
||
return x;
|
||
}
|
||
|
||
// w: [OC,IC, KD, 1 * 1]
|
||
// x: [N, IC, IH, IW]
|
||
// b: [OC,]
|
||
// result: [N, OC, OH, OW]
|
||
__STATIC_INLINE__ struct ggml_tensor* ggml_nn_conv_3d_nx1x1_bak(struct ggml_context* ctx,
|
||
struct ggml_tensor* x,
|
||
struct ggml_tensor* w,
|
||
struct ggml_tensor* b,
|
||
int s2 = 1,
|
||
int p2 = 1,
|
||
int d2 = 1) {
|
||
GGML_ASSERT(w->ne[0] == 1);
|
||
// timesteps = x.shape[0]
|
||
// x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps)
|
||
// x = conv3d(x)
|
||
// return rearrange(x, "b c t h w -> (b t) c h w")
|
||
int64_t T = x->ne[3];
|
||
int64_t B = x->ne[3] / T;
|
||
int64_t C = x->ne[2];
|
||
int64_t H = x->ne[1];
|
||
int64_t W = x->ne[0];
|
||
|
||
x = ggml_reshape_4d(ctx, x, W * H, C, T, B); // (b t) c h w -> b t c (h w)
|
||
x = ggml_cont(ctx, ggml_permute(ctx, x, 0, 2, 1, 3)); // b t c (h w) -> b c t (h w)
|
||
x = ggml_conv_2d(ctx, w, x, 1, s2, 0, p2, 1, d2); // [B, OC, T, OH * OW]
|
||
if (b != NULL) {
|
||
b = ggml_reshape_4d(ctx, b, 1, 1, b->ne[0], 1);
|
||
x = ggml_add(ctx, x, b);
|
||
}
|
||
x = ggml_cont(ctx, ggml_permute(ctx, x, 0, 2, 1, 3)); // b c t (h w) -> b t c (h w)
|
||
x = ggml_reshape_4d(ctx, x, W, H, C, T * B); // b t c (h w) -> (b t) c h w
|
||
return x; // [B*T, OC, OH, OW]
|
||
}
|
||
|
||
// w: [OC,IC, KD, 1 * 1]
|
||
// x: [N, IC, ID, IH*IW]
|
||
// b: [OC,]
|
||
// result: [N, OC, OD, OH*OW]
|
||
__STATIC_INLINE__ struct ggml_tensor* ggml_nn_conv_3d_nx1x1(struct ggml_context* ctx,
|
||
struct ggml_tensor* x,
|
||
struct ggml_tensor* w,
|
||
struct ggml_tensor* b,
|
||
int s2 = 1,
|
||
int p2 = 1,
|
||
int d2 = 1) {
|
||
x = ggml_conv_2d(ctx, w, x, 1, s2, 0, p2, 1, d2); // [N, OC, T, OH * OW]
|
||
if (b != NULL) {
|
||
b = ggml_reshape_4d(ctx, b, 1, 1, b->ne[0], 1);
|
||
x = ggml_add(ctx, x, b);
|
||
}
|
||
return x; // [N, OC, T, OH * OW]
|
||
}
|
||
|
||
// qkv: [N, L, 3*C]
|
||
// return: ([N, L, C], [N, L, C], [N, L, C])
|
||
__STATIC_INLINE__ std::vector<struct ggml_tensor*> split_qkv(struct ggml_context* ctx,
|
||
struct ggml_tensor* qkv) {
|
||
qkv = ggml_reshape_4d(ctx, qkv, qkv->ne[0] / 3, 3, qkv->ne[1], qkv->ne[2]); // [N, L, 3, C]
|
||
qkv = ggml_cont(ctx, ggml_permute(ctx, qkv, 0, 3, 1, 2)); // [3, N, L, C]
|
||
|
||
int64_t offset = qkv->nb[2] * qkv->ne[2];
|
||
auto q = ggml_view_3d(ctx, qkv, qkv->ne[0], qkv->ne[1], qkv->ne[2], qkv->nb[1], qkv->nb[2], offset * 0); // [N, L, C]
|
||
auto k = ggml_view_3d(ctx, qkv, qkv->ne[0], qkv->ne[1], qkv->ne[2], qkv->nb[1], qkv->nb[2], offset * 1); // [N, L, C]
|
||
auto v = ggml_view_3d(ctx, qkv, qkv->ne[0], qkv->ne[1], qkv->ne[2], qkv->nb[1], qkv->nb[2], offset * 2); // [N, L, C]
|
||
return {q, k, v};
|
||
}
|
||
|
||
// q: [N * n_head, n_token, d_head]
|
||
// k: [N * n_head, n_k, d_head]
|
||
// v: [N * n_head, d_head, n_k]
|
||
// return: [N * n_head, n_token, d_head]
|
||
__STATIC_INLINE__ struct ggml_tensor* ggml_nn_attention(struct ggml_context* ctx,
|
||
struct ggml_tensor* q,
|
||
struct ggml_tensor* k,
|
||
struct ggml_tensor* v,
|
||
bool mask = false) {
|
||
#if defined(SD_USE_FLASH_ATTENTION) && !defined(SD_USE_CUDA) && !defined(SD_USE_METAL) && !defined(SD_USE_VULKAN) && !defined(SD_USE_SYCL)
|
||
struct ggml_tensor* kqv = ggml_flash_attn(ctx, q, k, v, false); // [N * n_head, n_token, d_head]
|
||
#else
|
||
float d_head = (float)q->ne[0];
|
||
struct ggml_tensor* kq = ggml_mul_mat(ctx, k, q); // [N * n_head, n_token, n_k]
|
||
kq = ggml_scale_inplace(ctx, kq, 1.0f / sqrt(d_head));
|
||
if (mask) {
|
||
kq = ggml_diag_mask_inf_inplace(ctx, kq, 0);
|
||
}
|
||
kq = ggml_soft_max_inplace(ctx, kq);
|
||
struct ggml_tensor* kqv = ggml_mul_mat(ctx, v, kq); // [N * n_head, n_token, d_head]
|
||
#endif
|
||
return kqv;
|
||
}
|
||
|
||
// q: [N, L_q, C] or [N*n_head, L_q, d_head]
|
||
// k: [N, L_k, C] or [N*n_head, L_k, d_head]
|
||
// v: [N, L_k, C] or [N, L_k, n_head, d_head]
|
||
// return: [N, L_q, C]
|
||
__STATIC_INLINE__ struct ggml_tensor* ggml_nn_attention_ext(struct ggml_context* ctx,
|
||
struct ggml_tensor* q,
|
||
struct ggml_tensor* k,
|
||
struct ggml_tensor* v,
|
||
int64_t n_head,
|
||
struct ggml_tensor* mask = NULL,
|
||
bool diag_mask_inf = false,
|
||
bool skip_reshape = false,
|
||
bool flash_attn = false) {
|
||
int64_t L_q;
|
||
int64_t L_k;
|
||
int64_t C;
|
||
int64_t N;
|
||
int64_t d_head;
|
||
if (!skip_reshape) {
|
||
L_q = q->ne[1];
|
||
L_k = k->ne[1];
|
||
C = q->ne[0];
|
||
N = q->ne[2];
|
||
d_head = C / n_head;
|
||
q = ggml_reshape_4d(ctx, q, d_head, n_head, L_q, N); // [N, L_q, n_head, d_head]
|
||
q = ggml_cont(ctx, ggml_permute(ctx, q, 0, 2, 1, 3)); // [N, n_head, L_q, d_head]
|
||
q = ggml_reshape_3d(ctx, q, d_head, L_q, n_head * N); // [N * n_head, L_q, d_head]
|
||
|
||
k = ggml_reshape_4d(ctx, k, d_head, n_head, L_k, N); // [N, L_k, n_head, d_head]
|
||
k = ggml_cont(ctx, ggml_permute(ctx, k, 0, 2, 1, 3)); // [N, n_head, L_k, d_head]
|
||
k = ggml_reshape_3d(ctx, k, d_head, L_k, n_head * N); // [N * n_head, L_k, d_head]
|
||
|
||
v = ggml_reshape_4d(ctx, v, d_head, n_head, L_k, N); // [N, L_k, n_head, d_head]
|
||
} else {
|
||
L_q = q->ne[1];
|
||
L_k = k->ne[1];
|
||
d_head = v->ne[0];
|
||
N = v->ne[3];
|
||
C = d_head * n_head;
|
||
}
|
||
|
||
float scale = (1.0f / sqrt((float)d_head));
|
||
|
||
// if (flash_attn) {
|
||
// LOG_DEBUG("attention_ext L_q:%d L_k:%d n_head:%d C:%d d_head:%d N:%d", L_q, L_k, n_head, C, d_head, N);
|
||
// }
|
||
// is there anything oddly shaped?? ping Green-Sky if you can trip this assert
|
||
GGML_ASSERT(((L_k % 256 == 0) && L_q == L_k) || !(L_k % 256 == 0));
|
||
|
||
bool can_use_flash_attn = true;
|
||
can_use_flash_attn = can_use_flash_attn && L_k % 256 == 0;
|
||
can_use_flash_attn = can_use_flash_attn && d_head % 64 == 0; // double check
|
||
|
||
// cuda max d_head seems to be 256, cpu does seem to work with 512
|
||
can_use_flash_attn = can_use_flash_attn && d_head <= 256; // double check
|
||
|
||
if (mask != nullptr) {
|
||
// TODO(Green-Sky): figure out if we can bend t5 to work too
|
||
can_use_flash_attn = can_use_flash_attn && mask->ne[2] == 1;
|
||
can_use_flash_attn = can_use_flash_attn && mask->ne[3] == 1;
|
||
}
|
||
|
||
// TODO(Green-Sky): more pad or disable for funny tensor shapes
|
||
|
||
ggml_tensor* kqv = nullptr;
|
||
// GGML_ASSERT((flash_attn && can_use_flash_attn) || !flash_attn);
|
||
if (can_use_flash_attn && flash_attn) {
|
||
// LOG_DEBUG("using flash attention");
|
||
k = ggml_cast(ctx, k, GGML_TYPE_F16);
|
||
|
||
v = ggml_cont(ctx, ggml_permute(ctx, v, 0, 2, 1, 3)); // [N, n_head, L_k, d_head]
|
||
v = ggml_reshape_3d(ctx, v, d_head, L_k, n_head * N); // [N * n_head, L_k, d_head]
|
||
v = ggml_cast(ctx, v, GGML_TYPE_F16);
|
||
|
||
kqv = ggml_flash_attn_ext(ctx, q, k, v, mask, scale, 0, 0);
|
||
ggml_flash_attn_ext_set_prec(kqv, GGML_PREC_F32);
|
||
|
||
// kqv = ggml_view_3d(ctx, kqv, d_head, n_head, L_k, kqv->nb[1], kqv->nb[2], 0);
|
||
kqv = ggml_view_3d(ctx, kqv, d_head, n_head, L_q, kqv->nb[1], kqv->nb[2], 0);
|
||
} else {
|
||
v = ggml_cont(ctx, ggml_permute(ctx, v, 1, 2, 0, 3)); // [N, n_head, d_head, L_k]
|
||
v = ggml_reshape_3d(ctx, v, L_k, d_head, n_head * N); // [N * n_head, d_head, L_k]
|
||
|
||
auto kq = ggml_mul_mat(ctx, k, q); // [N * n_head, L_q, L_k]
|
||
kq = ggml_scale_inplace(ctx, kq, scale);
|
||
if (mask) {
|
||
kq = ggml_add(ctx, kq, mask);
|
||
}
|
||
if (diag_mask_inf) {
|
||
kq = ggml_diag_mask_inf_inplace(ctx, kq, 0);
|
||
}
|
||
kq = ggml_soft_max_inplace(ctx, kq);
|
||
|
||
kqv = ggml_mul_mat(ctx, v, kq); // [N * n_head, L_q, d_head]
|
||
|
||
kqv = ggml_reshape_4d(ctx, kqv, d_head, L_q, n_head, N); // [N, n_head, L_q, d_head]
|
||
kqv = ggml_permute(ctx, kqv, 0, 2, 1, 3); // [N, L_q, n_head, d_head]
|
||
}
|
||
|
||
kqv = ggml_cont(ctx, kqv);
|
||
kqv = ggml_reshape_3d(ctx, kqv, d_head * n_head, L_q, N); // [N, L_q, C]
|
||
|
||
return kqv;
|
||
}
|
||
|
||
__STATIC_INLINE__ struct ggml_tensor* ggml_nn_layer_norm(struct ggml_context* ctx,
|
||
struct ggml_tensor* x,
|
||
struct ggml_tensor* w,
|
||
struct ggml_tensor* b,
|
||
float eps = EPS) {
|
||
x = ggml_norm(ctx, x, eps);
|
||
if (w != NULL) {
|
||
x = ggml_mul(ctx, x, w);
|
||
if (b != NULL) {
|
||
x = ggml_add(ctx, x, b);
|
||
}
|
||
}
|
||
return x;
|
||
}
|
||
|
||
__STATIC_INLINE__ struct ggml_tensor* ggml_nn_group_norm(struct ggml_context* ctx,
|
||
struct ggml_tensor* x,
|
||
struct ggml_tensor* w,
|
||
struct ggml_tensor* b,
|
||
int num_groups = 32) {
|
||
if (ggml_n_dims(x) >= 3 && w != NULL && b != NULL) {
|
||
w = ggml_reshape_4d(ctx, w, 1, 1, w->ne[0], 1);
|
||
b = ggml_reshape_4d(ctx, b, 1, 1, b->ne[0], 1);
|
||
}
|
||
|
||
const float eps = 1e-6f; // default eps parameter
|
||
x = ggml_group_norm(ctx, x, num_groups, eps);
|
||
if (w != NULL && b != NULL) {
|
||
x = ggml_mul(ctx, x, w);
|
||
// b = ggml_repeat(ctx, b, x);
|
||
x = ggml_add(ctx, x, b);
|
||
}
|
||
return x;
|
||
}
|
||
|
||
__STATIC_INLINE__ void ggml_backend_tensor_get_and_sync(ggml_backend_t backend, const struct ggml_tensor* tensor, void* data, size_t offset, size_t size) {
|
||
#if defined(SD_USE_CUDA) || defined(SD_USE_SYCL)
|
||
if (!ggml_backend_is_cpu(backend)) {
|
||
ggml_backend_tensor_get_async(backend, tensor, data, offset, size);
|
||
ggml_backend_synchronize(backend);
|
||
} else {
|
||
ggml_backend_tensor_get(tensor, data, offset, size);
|
||
}
|
||
#else
|
||
ggml_backend_tensor_get(tensor, data, offset, size);
|
||
#endif
|
||
}
|
||
|
||
__STATIC_INLINE__ float ggml_backend_tensor_get_f32(ggml_tensor* tensor) {
|
||
GGML_ASSERT(tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_F16);
|
||
float value;
|
||
if (tensor->type == GGML_TYPE_F32) {
|
||
ggml_backend_tensor_get(tensor, &value, 0, sizeof(value));
|
||
} else { // GGML_TYPE_F16
|
||
ggml_fp16_t f16_value;
|
||
ggml_backend_tensor_get(tensor, &f16_value, 0, sizeof(f16_value));
|
||
value = ggml_fp16_to_fp32(f16_value);
|
||
}
|
||
return value;
|
||
}
|
||
|
||
__STATIC_INLINE__ struct ggml_tensor* vector_to_ggml_tensor(struct ggml_context* ctx,
|
||
const std::vector<float>& vec) {
|
||
struct ggml_tensor* t = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, vec.size());
|
||
memcpy(t->data, (const void*)vec.data(), ggml_nbytes(t));
|
||
return t;
|
||
}
|
||
|
||
__STATIC_INLINE__ struct ggml_tensor* vector_to_ggml_tensor_i32(struct ggml_context* ctx,
|
||
const std::vector<int>& vec) {
|
||
struct ggml_tensor* t = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, vec.size());
|
||
memcpy(t->data, (const void*)vec.data(), ggml_nbytes(t));
|
||
return t;
|
||
}
|
||
|
||
__STATIC_INLINE__ std::vector<float> arange(float start, float end, float step = 1.f) {
|
||
std::vector<float> result;
|
||
|
||
for (float value = start; value < end; value += step) {
|
||
result.push_back(value);
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
// Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
|
||
__STATIC_INLINE__ std::vector<float> timestep_embedding(std::vector<float> timesteps,
|
||
int dim,
|
||
int max_period = 10000) {
|
||
// timesteps: [N,]
|
||
// embedding: [N, dim]
|
||
size_t N = timesteps.size();
|
||
int acutual_dim = dim;
|
||
if (dim % 2 != 0) {
|
||
acutual_dim = dim + 1;
|
||
}
|
||
std::vector<float> embedding(N * acutual_dim, 0.f);
|
||
int half = dim / 2;
|
||
std::vector<float> freqs(half);
|
||
for (int i = 0; i < half; ++i) {
|
||
freqs[i] = (float)std::exp(-std::log(max_period) * i / half);
|
||
}
|
||
for (int i = 0; i < N; ++i) {
|
||
for (int j = 0; j < half; ++j) {
|
||
float arg = timesteps[i] * freqs[j];
|
||
embedding[i * acutual_dim + j] = std::cos(arg);
|
||
embedding[i * acutual_dim + j + half] = std::sin(arg);
|
||
}
|
||
}
|
||
return embedding;
|
||
}
|
||
|
||
__STATIC_INLINE__ void set_timestep_embedding(std::vector<float> timesteps,
|
||
struct ggml_tensor* embedding,
|
||
int dim,
|
||
int max_period = 10000) {
|
||
std::vector<float> embedding_vec = timestep_embedding(timesteps, dim, max_period);
|
||
memcpy(((char*)embedding->data), ((char*)embedding_vec.data()), ggml_nbytes(embedding));
|
||
}
|
||
|
||
__STATIC_INLINE__ struct ggml_tensor* new_timestep_embedding(struct ggml_context* ctx,
|
||
std::vector<float> timesteps,
|
||
int dim,
|
||
int max_period = 10000) {
|
||
// timesteps: [N,]
|
||
// embedding: [N, dim]
|
||
std::vector<float> embedding_vec = timestep_embedding(timesteps, dim, max_period);
|
||
int acutual_dim = dim;
|
||
if (dim % 2 != 0) {
|
||
acutual_dim = dim + 1;
|
||
}
|
||
struct ggml_tensor* embedding = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, acutual_dim, timesteps.size());
|
||
if (embedding->data != NULL) {
|
||
memcpy(((char*)embedding->data), ((char*)embedding_vec.data()), ggml_nbytes(embedding));
|
||
} else {
|
||
ggml_backend_tensor_set(embedding, embedding_vec.data(), 0, ggml_nbytes(embedding));
|
||
}
|
||
return embedding;
|
||
}
|
||
|
||
__STATIC_INLINE__ struct ggml_tensor* ggml_nn_timestep_embedding(
|
||
struct ggml_context* ctx,
|
||
struct ggml_tensor* timesteps,
|
||
int dim,
|
||
int max_period = 10000,
|
||
float time_factor = 1.0f) {
|
||
timesteps = ggml_scale(ctx, timesteps, time_factor);
|
||
return ggml_timestep_embedding(ctx, timesteps, dim, max_period);
|
||
}
|
||
|
||
__STATIC_INLINE__ size_t ggml_tensor_num(ggml_context* ctx) {
|
||
size_t num = 0;
|
||
for (ggml_tensor* t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
|
||
num++;
|
||
}
|
||
return num;
|
||
}
|
||
|
||
/* SDXL with LoRA requires more space */
|
||
#define MAX_PARAMS_TENSOR_NUM 32768
|
||
#define MAX_GRAPH_SIZE 32768
|
||
|
||
struct GGMLRunner {
|
||
protected:
|
||
typedef std::function<struct ggml_cgraph*()> get_graph_cb_t;
|
||
|
||
struct ggml_context* params_ctx = NULL;
|
||
ggml_backend_buffer_t params_buffer = NULL;
|
||
|
||
struct ggml_context* compute_ctx = NULL;
|
||
struct ggml_gallocr* compute_allocr = NULL;
|
||
|
||
std::map<struct ggml_tensor*, const void*> backend_tensor_data_map;
|
||
|
||
ggml_backend_t backend = NULL;
|
||
|
||
void alloc_params_ctx() {
|
||
struct ggml_init_params params;
|
||
params.mem_size = static_cast<size_t>(MAX_PARAMS_TENSOR_NUM * ggml_tensor_overhead());
|
||
params.mem_buffer = NULL;
|
||
params.no_alloc = true;
|
||
|
||
params_ctx = ggml_init(params);
|
||
GGML_ASSERT(params_ctx != NULL);
|
||
}
|
||
|
||
void free_params_ctx() {
|
||
if (params_ctx != NULL) {
|
||
ggml_free(params_ctx);
|
||
params_ctx = NULL;
|
||
}
|
||
}
|
||
|
||
void alloc_compute_ctx() {
|
||
struct ggml_init_params params;
|
||
params.mem_size = static_cast<size_t>(ggml_tensor_overhead() * MAX_GRAPH_SIZE + ggml_graph_overhead());
|
||
params.mem_buffer = NULL;
|
||
params.no_alloc = true;
|
||
|
||
compute_ctx = ggml_init(params);
|
||
GGML_ASSERT(compute_ctx != NULL);
|
||
}
|
||
|
||
void free_compute_ctx() {
|
||
if (compute_ctx != NULL) {
|
||
ggml_free(compute_ctx);
|
||
compute_ctx = NULL;
|
||
}
|
||
}
|
||
|
||
bool alloc_compute_buffer(get_graph_cb_t get_graph) {
|
||
if (compute_allocr != NULL) {
|
||
return true;
|
||
}
|
||
reset_compute_ctx();
|
||
struct ggml_cgraph* gf = get_graph();
|
||
backend_tensor_data_map.clear();
|
||
compute_allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(backend));
|
||
|
||
if (!ggml_gallocr_reserve(compute_allocr, gf)) {
|
||
// failed to allocate the compute buffer
|
||
LOG_ERROR("%s: failed to allocate the compute buffer\n", get_desc().c_str());
|
||
free_compute_buffer();
|
||
return false;
|
||
}
|
||
|
||
// compute the required memory
|
||
size_t compute_buffer_size = ggml_gallocr_get_buffer_size(compute_allocr, 0);
|
||
LOG_DEBUG("%s compute buffer size: %.2f MB(%s)",
|
||
get_desc().c_str(),
|
||
compute_buffer_size / 1024.0 / 1024.0,
|
||
ggml_backend_is_cpu(backend) ? "RAM" : "VRAM");
|
||
return true;
|
||
}
|
||
|
||
void cpy_data_to_backend_tensor() {
|
||
for (auto& kv : backend_tensor_data_map) {
|
||
auto tensor = kv.first;
|
||
auto data = kv.second;
|
||
|
||
ggml_backend_tensor_set(tensor, data, 0, ggml_nbytes(tensor));
|
||
}
|
||
|
||
backend_tensor_data_map.clear();
|
||
}
|
||
|
||
public:
|
||
virtual std::string get_desc() = 0;
|
||
|
||
GGMLRunner(ggml_backend_t backend)
|
||
: backend(backend) {
|
||
alloc_params_ctx();
|
||
}
|
||
|
||
virtual ~GGMLRunner() {
|
||
free_params_buffer();
|
||
free_compute_buffer();
|
||
free_params_ctx();
|
||
free_compute_ctx();
|
||
}
|
||
|
||
void reset_compute_ctx() {
|
||
free_compute_ctx();
|
||
alloc_compute_ctx();
|
||
}
|
||
|
||
bool alloc_params_buffer() {
|
||
size_t num_tensors = ggml_tensor_num(params_ctx);
|
||
params_buffer = ggml_backend_alloc_ctx_tensors(params_ctx, backend);
|
||
if (params_buffer == NULL) {
|
||
LOG_ERROR("%s alloc params backend buffer failed, num_tensors = %i",
|
||
get_desc().c_str(),
|
||
num_tensors);
|
||
return false;
|
||
}
|
||
size_t params_buffer_size = ggml_backend_buffer_get_size(params_buffer);
|
||
LOG_DEBUG("%s params backend buffer size = % 6.2f MB(%s) (%i tensors)",
|
||
get_desc().c_str(),
|
||
params_buffer_size / (1024.0 * 1024.0),
|
||
ggml_backend_is_cpu(backend) ? "RAM" : "VRAM",
|
||
num_tensors);
|
||
// printf("%s params backend buffer size = % 6.2f MB(%s) (%i tensors)\n",
|
||
// get_desc().c_str(),
|
||
// params_buffer_size / (1024.0 * 1024.0),
|
||
// ggml_backend_is_cpu(backend) ? "RAM" : "VRAM",
|
||
// num_tensors);
|
||
return true;
|
||
}
|
||
|
||
void free_params_buffer() {
|
||
if (params_buffer != NULL) {
|
||
ggml_backend_buffer_free(params_buffer);
|
||
params_buffer = NULL;
|
||
}
|
||
}
|
||
|
||
size_t get_params_buffer_size() {
|
||
if (params_buffer != NULL) {
|
||
return ggml_backend_buffer_get_size(params_buffer);
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
void free_compute_buffer() {
|
||
if (compute_allocr != NULL) {
|
||
ggml_gallocr_free(compute_allocr);
|
||
compute_allocr = NULL;
|
||
}
|
||
}
|
||
|
||
// do copy after alloc graph
|
||
void set_backend_tensor_data(struct ggml_tensor* tensor, const void* data) {
|
||
backend_tensor_data_map[tensor] = data;
|
||
}
|
||
|
||
struct ggml_tensor* to_backend(struct ggml_tensor* tensor) {
|
||
GGML_ASSERT(compute_ctx != NULL);
|
||
if (tensor == NULL) {
|
||
return NULL;
|
||
}
|
||
// it's performing a compute, check if backend isn't cpu
|
||
if (!ggml_backend_is_cpu(backend) && (tensor->buffer == NULL || ggml_backend_buffer_is_host(tensor->buffer))) {
|
||
// pass input tensors to gpu memory
|
||
auto backend_tensor = ggml_dup_tensor(compute_ctx, tensor);
|
||
|
||
set_backend_tensor_data(backend_tensor, tensor->data);
|
||
return backend_tensor;
|
||
} else {
|
||
return tensor;
|
||
}
|
||
}
|
||
|
||
void compute(get_graph_cb_t get_graph,
|
||
int n_threads,
|
||
bool free_compute_buffer_immediately = true,
|
||
struct ggml_tensor** output = NULL,
|
||
struct ggml_context* output_ctx = NULL) {
|
||
alloc_compute_buffer(get_graph);
|
||
reset_compute_ctx();
|
||
struct ggml_cgraph* gf = get_graph();
|
||
GGML_ASSERT(ggml_gallocr_alloc_graph(compute_allocr, gf));
|
||
cpy_data_to_backend_tensor();
|
||
if (ggml_backend_is_cpu(backend)) {
|
||
ggml_backend_cpu_set_n_threads(backend, n_threads);
|
||
}
|
||
|
||
ggml_backend_graph_compute(backend, gf);
|
||
#ifdef GGML_PERF
|
||
ggml_graph_print(gf);
|
||
#endif
|
||
if (output != NULL) {
|
||
auto result = ggml_graph_node(gf, -1);
|
||
if (*output == NULL && output_ctx != NULL) {
|
||
*output = ggml_dup_tensor(output_ctx, result);
|
||
}
|
||
if (*output != NULL) {
|
||
ggml_backend_tensor_get_and_sync(backend, result, (*output)->data, 0, ggml_nbytes(*output));
|
||
}
|
||
}
|
||
|
||
if (free_compute_buffer_immediately) {
|
||
free_compute_buffer();
|
||
}
|
||
}
|
||
};
|
||
|
||
class GGMLBlock {
|
||
protected:
|
||
typedef std::unordered_map<std::string, struct ggml_tensor*> ParameterMap;
|
||
typedef std::unordered_map<std::string, std::shared_ptr<GGMLBlock>> GGMLBlockMap;
|
||
GGMLBlockMap blocks;
|
||
ParameterMap params;
|
||
|
||
void init_blocks(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix = "") {
|
||
for (auto& pair : blocks) {
|
||
auto& block = pair.second;
|
||
block->init(ctx, tensor_types, prefix + pair.first);
|
||
}
|
||
}
|
||
|
||
virtual void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix = "") {}
|
||
|
||
public:
|
||
void init(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, std::string prefix = "") {
|
||
if (prefix.size() > 0) {
|
||
prefix = prefix + ".";
|
||
}
|
||
init_blocks(ctx, tensor_types, prefix);
|
||
init_params(ctx, tensor_types, prefix);
|
||
}
|
||
|
||
size_t get_params_num() {
|
||
size_t num_tensors = params.size();
|
||
for (auto& pair : blocks) {
|
||
auto& block = pair.second;
|
||
|
||
num_tensors += block->get_params_num();
|
||
}
|
||
return num_tensors;
|
||
};
|
||
|
||
size_t get_params_mem_size() {
|
||
size_t mem_size = 0;
|
||
for (auto& pair : blocks) {
|
||
auto& block = pair.second;
|
||
|
||
mem_size += block->get_params_mem_size();
|
||
}
|
||
|
||
for (auto& pair : params) {
|
||
mem_size += ggml_nbytes(pair.second);
|
||
}
|
||
|
||
return mem_size;
|
||
}
|
||
|
||
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors, std::string prefix = "") {
|
||
if (prefix.size() > 0) {
|
||
prefix = prefix + ".";
|
||
}
|
||
for (auto& pair : blocks) {
|
||
auto& block = pair.second;
|
||
block->get_param_tensors(tensors, prefix + pair.first);
|
||
}
|
||
|
||
for (auto& pair : params) {
|
||
struct ggml_tensor* param = pair.second;
|
||
tensors[prefix + pair.first] = pair.second;
|
||
}
|
||
}
|
||
};
|
||
|
||
class UnaryBlock : public GGMLBlock {
|
||
public:
|
||
virtual struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) = 0;
|
||
};
|
||
|
||
class Linear : public UnaryBlock {
|
||
protected:
|
||
int64_t in_features;
|
||
int64_t out_features;
|
||
bool bias;
|
||
bool force_f32;
|
||
|
||
void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix = "") {
|
||
enum ggml_type wtype = (tensor_types.find(prefix + "weight") != tensor_types.end()) ? tensor_types[prefix + "weight"] : GGML_TYPE_F32;
|
||
if (in_features % ggml_blck_size(wtype) != 0 || force_f32) {
|
||
wtype = GGML_TYPE_F32;
|
||
}
|
||
params["weight"] = ggml_new_tensor_2d(ctx, wtype, in_features, out_features);
|
||
if (bias) {
|
||
enum ggml_type wtype = GGML_TYPE_F32; //(tensor_types.ypes.find(prefix + "bias") != tensor_types.end()) ? tensor_types[prefix + "bias"] : GGML_TYPE_F32;
|
||
params["bias"] = ggml_new_tensor_1d(ctx, wtype, out_features);
|
||
}
|
||
}
|
||
|
||
public:
|
||
Linear(int64_t in_features,
|
||
int64_t out_features,
|
||
bool bias = true,
|
||
bool force_f32 = false)
|
||
: in_features(in_features),
|
||
out_features(out_features),
|
||
bias(bias),
|
||
force_f32(force_f32) {}
|
||
|
||
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
|
||
struct ggml_tensor* w = params["weight"];
|
||
struct ggml_tensor* b = NULL;
|
||
if (bias) {
|
||
b = params["bias"];
|
||
}
|
||
return ggml_nn_linear(ctx, x, w, b);
|
||
}
|
||
};
|
||
|
||
class Embedding : public UnaryBlock {
|
||
protected:
|
||
int64_t embedding_dim;
|
||
int64_t num_embeddings;
|
||
void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix = "") {
|
||
enum ggml_type wtype = (tensor_types.find(prefix + "weight") != tensor_types.end()) ? tensor_types[prefix + "weight"] : GGML_TYPE_F32;
|
||
params["weight"] = ggml_new_tensor_2d(ctx, wtype, embedding_dim, num_embeddings);
|
||
}
|
||
|
||
public:
|
||
Embedding(int64_t num_embeddings, int64_t embedding_dim)
|
||
: embedding_dim(embedding_dim),
|
||
num_embeddings(num_embeddings) {
|
||
}
|
||
|
||
struct ggml_tensor* forward(struct ggml_context* ctx,
|
||
struct ggml_tensor* input_ids) {
|
||
// input_ids: [N, n_token]
|
||
auto weight = params["weight"];
|
||
|
||
// There are issues with ggml batch inference, so we are expanding it here first.
|
||
// TODO: fix ggml batch inference
|
||
int64_t n = input_ids->ne[1];
|
||
input_ids = ggml_reshape_1d(ctx, input_ids, input_ids->ne[0] * input_ids->ne[1]);
|
||
|
||
input_ids = ggml_reshape_3d(ctx, input_ids, input_ids->ne[0], 1, input_ids->ne[1]);
|
||
auto embedding = ggml_get_rows(ctx, weight, input_ids);
|
||
embedding = ggml_reshape_3d(ctx, embedding, embedding->ne[0], embedding->ne[1] / n, n);
|
||
|
||
// [N, n_token, embedding_dim]
|
||
return embedding;
|
||
}
|
||
};
|
||
|
||
class Conv2d : public UnaryBlock {
|
||
protected:
|
||
int64_t in_channels;
|
||
int64_t out_channels;
|
||
std::pair<int, int> kernel_size;
|
||
std::pair<int, int> stride;
|
||
std::pair<int, int> padding;
|
||
std::pair<int, int> dilation;
|
||
bool bias;
|
||
|
||
void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix = "") {
|
||
enum ggml_type wtype = GGML_TYPE_F16; //(tensor_types.find(prefix + "weight") != tensor_types.end()) ? tensor_types[prefix + "weight"] : GGML_TYPE_F16;
|
||
params["weight"] = ggml_new_tensor_4d(ctx, wtype, kernel_size.second, kernel_size.first, in_channels, out_channels);
|
||
if (bias) {
|
||
enum ggml_type wtype = GGML_TYPE_F32; // (tensor_types.find(prefix + "bias") != tensor_types.end()) ? tensor_types[prefix + "bias"] : GGML_TYPE_F32;
|
||
params["bias"] = ggml_new_tensor_1d(ctx, wtype, out_channels);
|
||
}
|
||
}
|
||
|
||
public:
|
||
Conv2d(int64_t in_channels,
|
||
int64_t out_channels,
|
||
std::pair<int, int> kernel_size,
|
||
std::pair<int, int> stride = {1, 1},
|
||
std::pair<int, int> padding = {0, 0},
|
||
std::pair<int, int> dilation = {1, 1},
|
||
bool bias = true)
|
||
: in_channels(in_channels),
|
||
out_channels(out_channels),
|
||
kernel_size(kernel_size),
|
||
stride(stride),
|
||
padding(padding),
|
||
dilation(dilation),
|
||
bias(bias) {}
|
||
|
||
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
|
||
struct ggml_tensor* w = params["weight"];
|
||
struct ggml_tensor* b = NULL;
|
||
if (bias) {
|
||
b = params["bias"];
|
||
}
|
||
return ggml_nn_conv_2d(ctx, x, w, b, stride.second, stride.first, padding.second, padding.first, dilation.second, dilation.first);
|
||
}
|
||
};
|
||
|
||
class Conv3dnx1x1 : public UnaryBlock {
|
||
protected:
|
||
int64_t in_channels;
|
||
int64_t out_channels;
|
||
int64_t kernel_size;
|
||
int64_t stride;
|
||
int64_t padding;
|
||
int64_t dilation;
|
||
bool bias;
|
||
|
||
void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix = "") {
|
||
enum ggml_type wtype = GGML_TYPE_F16; //(tensor_types.find(prefix + "weight") != tensor_types.end()) ? tensor_types[prefix + "weight"] : GGML_TYPE_F16;
|
||
params["weight"] = ggml_new_tensor_4d(ctx, wtype, 1, kernel_size, in_channels, out_channels); // 5d => 4d
|
||
if (bias) {
|
||
enum ggml_type wtype = GGML_TYPE_F32; //(tensor_types.find(prefix + "bias") != tensor_types.end()) ? tensor_types[prefix + "bias"] : GGML_TYPE_F32;
|
||
params["bias"] = ggml_new_tensor_1d(ctx, wtype, out_channels);
|
||
}
|
||
}
|
||
|
||
public:
|
||
Conv3dnx1x1(int64_t in_channels,
|
||
int64_t out_channels,
|
||
int64_t kernel_size,
|
||
int64_t stride = 1,
|
||
int64_t padding = 0,
|
||
int64_t dilation = 1,
|
||
bool bias = true)
|
||
: in_channels(in_channels),
|
||
out_channels(out_channels),
|
||
kernel_size(kernel_size),
|
||
stride(stride),
|
||
padding(padding),
|
||
dilation(dilation),
|
||
bias(bias) {}
|
||
|
||
// x: [N, IC, ID, IH*IW]
|
||
// result: [N, OC, OD, OH*OW]
|
||
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
|
||
struct ggml_tensor* w = params["weight"];
|
||
struct ggml_tensor* b = NULL;
|
||
if (bias) {
|
||
b = params["bias"];
|
||
}
|
||
return ggml_nn_conv_3d_nx1x1(ctx, x, w, b, stride, padding, dilation);
|
||
}
|
||
};
|
||
|
||
class LayerNorm : public UnaryBlock {
|
||
protected:
|
||
int64_t normalized_shape;
|
||
float eps;
|
||
bool elementwise_affine;
|
||
bool bias;
|
||
|
||
void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix = "") {
|
||
if (elementwise_affine) {
|
||
enum ggml_type wtype = GGML_TYPE_F32; //(tensor_types.ypes.find(prefix + "weight") != tensor_types.end()) ? tensor_types[prefix + "weight"] : GGML_TYPE_F32;
|
||
params["weight"] = ggml_new_tensor_1d(ctx, wtype, normalized_shape);
|
||
if (bias) {
|
||
enum ggml_type wtype = GGML_TYPE_F32; //(tensor_types.ypes.find(prefix + "bias") != tensor_types.end()) ? tensor_types[prefix + "bias"] : GGML_TYPE_F32;
|
||
params["bias"] = ggml_new_tensor_1d(ctx, wtype, normalized_shape);
|
||
}
|
||
}
|
||
}
|
||
|
||
public:
|
||
LayerNorm(int64_t normalized_shape,
|
||
float eps = 1e-05f,
|
||
bool elementwise_affine = true,
|
||
bool bias = true)
|
||
: normalized_shape(normalized_shape),
|
||
eps(eps),
|
||
elementwise_affine(elementwise_affine),
|
||
bias(bias) {}
|
||
|
||
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
|
||
struct ggml_tensor* w = NULL;
|
||
struct ggml_tensor* b = NULL;
|
||
|
||
if (elementwise_affine) {
|
||
w = params["weight"];
|
||
if (bias) {
|
||
b = params["bias"];
|
||
}
|
||
}
|
||
return ggml_nn_layer_norm(ctx, x, w, b, eps);
|
||
}
|
||
};
|
||
|
||
class GroupNorm : public GGMLBlock {
|
||
protected:
|
||
int64_t num_groups;
|
||
int64_t num_channels;
|
||
float eps;
|
||
bool affine;
|
||
|
||
void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix = "") {
|
||
if (affine) {
|
||
enum ggml_type wtype = GGML_TYPE_F32; //(tensor_types.find(prefix + "weight") != tensor_types.end()) ? tensor_types[prefix + "weight"] : GGML_TYPE_F32;
|
||
enum ggml_type bias_wtype = GGML_TYPE_F32; //(tensor_types.find(prefix + "bias") != tensor_types.end()) ? tensor_types[prefix + "bias"] : GGML_TYPE_F32;
|
||
params["weight"] = ggml_new_tensor_1d(ctx, wtype, num_channels);
|
||
params["bias"] = ggml_new_tensor_1d(ctx, bias_wtype, num_channels);
|
||
}
|
||
}
|
||
|
||
public:
|
||
GroupNorm(int64_t num_groups,
|
||
int64_t num_channels,
|
||
float eps = 1e-05f,
|
||
bool affine = true)
|
||
: num_groups(num_groups),
|
||
num_channels(num_channels),
|
||
eps(eps),
|
||
affine(affine) {}
|
||
|
||
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
|
||
struct ggml_tensor* w = NULL;
|
||
struct ggml_tensor* b = NULL;
|
||
if (affine) {
|
||
w = params["weight"];
|
||
b = params["bias"];
|
||
}
|
||
return ggml_nn_group_norm(ctx, x, w, b, num_groups);
|
||
}
|
||
};
|
||
|
||
class GroupNorm32 : public GroupNorm {
|
||
public:
|
||
GroupNorm32(int64_t num_channels)
|
||
: GroupNorm(32, num_channels, 1e-06f) {}
|
||
};
|
||
|
||
class MultiheadAttention : public GGMLBlock {
|
||
protected:
|
||
int64_t embed_dim;
|
||
int64_t n_head;
|
||
std::string q_proj_name;
|
||
std::string k_proj_name;
|
||
std::string v_proj_name;
|
||
std::string out_proj_name;
|
||
|
||
public:
|
||
MultiheadAttention(int64_t embed_dim,
|
||
int64_t n_head,
|
||
bool qkv_proj_bias = true,
|
||
bool out_proj_bias = true,
|
||
std::string q_proj_name = "q_proj",
|
||
std::string k_proj_name = "k_proj",
|
||
std::string v_proj_name = "v_proj",
|
||
std::string out_proj_name = "out_proj")
|
||
: embed_dim(embed_dim),
|
||
n_head(n_head),
|
||
q_proj_name(q_proj_name),
|
||
k_proj_name(k_proj_name),
|
||
v_proj_name(v_proj_name),
|
||
out_proj_name(out_proj_name) {
|
||
blocks[q_proj_name] = std::shared_ptr<GGMLBlock>(new Linear(embed_dim, embed_dim, qkv_proj_bias));
|
||
blocks[k_proj_name] = std::shared_ptr<GGMLBlock>(new Linear(embed_dim, embed_dim, qkv_proj_bias));
|
||
blocks[v_proj_name] = std::shared_ptr<GGMLBlock>(new Linear(embed_dim, embed_dim, qkv_proj_bias));
|
||
blocks[out_proj_name] = std::shared_ptr<GGMLBlock>(new Linear(embed_dim, embed_dim, out_proj_bias));
|
||
}
|
||
|
||
// x: [N, n_token, embed_dim]
|
||
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x, bool mask = false) {
|
||
auto q_proj = std::dynamic_pointer_cast<Linear>(blocks[q_proj_name]);
|
||
auto k_proj = std::dynamic_pointer_cast<Linear>(blocks[k_proj_name]);
|
||
auto v_proj = std::dynamic_pointer_cast<Linear>(blocks[v_proj_name]);
|
||
auto out_proj = std::dynamic_pointer_cast<Linear>(blocks[out_proj_name]);
|
||
|
||
struct ggml_tensor* q = q_proj->forward(ctx, x);
|
||
struct ggml_tensor* k = k_proj->forward(ctx, x);
|
||
struct ggml_tensor* v = v_proj->forward(ctx, x);
|
||
|
||
x = ggml_nn_attention_ext(ctx, q, k, v, n_head, NULL, mask); // [N, n_token, embed_dim]
|
||
|
||
x = out_proj->forward(ctx, x); // [N, n_token, embed_dim]
|
||
return x;
|
||
}
|
||
};
|
||
|
||
#endif // __GGML_EXTEND__HPP__
|