stable-diffusion.cpp/lora.hpp
bssrdf a469688e30
feat: add TencentARC PhotoMaker support (#179)
* first efforts at implementing photomaker; lots more to do

* added PhotoMakerIDEncoder model in SD

* fixed soem bugs; now photomaker model weights can be loaded into their tensor buffers

* added input id image loading

* added preprocessing inpit id images

* finished get_num_tensors

* fixed a bug in remove_duplicates

* add a get_learned_condition_with_trigger function to do photomaker stuff

* add a convert_token_to_id function for photomaker to extract trigger word's token id

* making progress; need to implement tokenizer decoder

* making more progress; finishing vision model forward

* debugging vision_model outputs

* corrected clip vision model output

* continue making progress in id fusion process

* finished stacked id embedding; to be tested

* remove garbage file

* debuging graph compute

* more progress; now alloc buffer failed

* fixed wtype issue; input images can only be 1 because issue with transformer when batch size > 1 (to be investigated)

* added delayed subject conditioning; now photomaker runs and generates images

* fixed stat_merge_step

* added photomaker lora model (to be tested)

* reworked pmid lora

* finished applying pmid lora; to be tested

* finalized pmid lora

* add a few print tensor; tweak in sample again

* small tweak; still not getting ID faces

* fixed a bug in FuseBlock forward; also remove diag_mask op in for vision transformer; getting better results

* disable pmid lora apply for now; 1 input image seems working; > 1 not working

* turn pmid lora apply back on

* fixed a decode bug

* fixed a bug in ggml's conv_2d, and now > 1 input images working

* add style_ratio as a cli param; reworked encode with trigger for attention weights

* merge commit fixing lora free param buffer error

* change default style ratio to 10%

* added an option to offload vae decoder to CPU for mem-limited gpus

* removing image normalization step seems making ID fidelity much higher

* revert default style ratio back ro 20%

* added an option for normalizing input ID images; cleaned up debugging code

* more clean up

* fixed bugs; now failed with cuda error; likely out-of-mem on GPU

* free pmid model params when required

* photomaker working properly now after merging and adapting to GGMLBlock API

* remove tensor renaming;  fixing names in the photomaker model file

* updated README.md to include instructions and notes for running PhotoMaker

* a bit clean up

* remove -DGGML_CUDA_FORCE_MMQ; more clean up and README update

* add input image requirement in README

* bring back freeing pmid lora params buffer; simply pooled output of CLIPvision

* remove MultiheadAttention2; customized MultiheadAttention

* added a WIN32 get_files_from_dir; turn off Photomakder if receiving no input images

* update docs

* fix ci error

* make stable-diffusion.h a pure c header file

This reverts commit 27887b630db6a92f269f0aef8de9bc9832ab50a9.

* fix ci error

* format code

* reuse get_learned_condition

* reuse pad_tokens

* reuse CLIPVisionModel

* reuse LoraModel

* add --clip-on-cpu

* fix lora name conversion for SDXL

---------

Co-authored-by: bssrdf <bssrdf@gmail.com>
Co-authored-by: leejet <leejet714@gmail.com>
2024-03-12 23:15:17 +08:00

175 lines
7.0 KiB
C++

#ifndef __LORA_HPP__
#define __LORA_HPP__
#include "ggml_extend.hpp"
#define LORA_GRAPH_SIZE 10240
struct LoraModel : public GGMLModule {
float multiplier = 1.0f;
std::map<std::string, struct ggml_tensor*> lora_tensors;
std::string file_path;
ModelLoader model_loader;
bool load_failed = false;
LoraModel(ggml_backend_t backend,
ggml_type wtype,
const std::string& file_path = "",
const std::string& prefix = "")
: file_path(file_path), GGMLModule(backend, wtype) {
if (!model_loader.init_from_file(file_path, prefix)) {
load_failed = true;
}
}
std::string get_desc() {
return "lora";
}
size_t get_params_num() {
return LORA_GRAPH_SIZE;
}
size_t get_params_mem_size() {
return model_loader.get_params_mem_size(NULL);
}
bool load_from_file(bool filter_tensor = false) {
LOG_INFO("loading LoRA from '%s'", file_path.c_str());
if (load_failed) {
LOG_ERROR("init lora model loader from file failed: '%s'", file_path.c_str());
return false;
}
bool dry_run = true;
auto on_new_tensor_cb = [&](const TensorStorage& tensor_storage, ggml_tensor** dst_tensor) -> bool {
const std::string& name = tensor_storage.name;
if (filter_tensor && !contains(name, "lora")) {
// LOG_INFO("skipping LoRA tesnor '%s'", name.c_str());
return true;
}
if (dry_run) {
struct ggml_tensor* real = ggml_new_tensor(params_ctx,
tensor_storage.type,
tensor_storage.n_dims,
tensor_storage.ne);
lora_tensors[name] = real;
} else {
auto real = lora_tensors[name];
*dst_tensor = real;
}
return true;
};
model_loader.load_tensors(on_new_tensor_cb, backend);
alloc_params_buffer();
dry_run = false;
model_loader.load_tensors(on_new_tensor_cb, backend);
LOG_DEBUG("finished loaded lora");
return true;
}
struct ggml_cgraph* build_graph(std::map<std::string, struct ggml_tensor*> model_tensors) {
struct ggml_cgraph* gf = ggml_new_graph_custom(compute_ctx, LORA_GRAPH_SIZE, false);
std::set<std::string> applied_lora_tensors;
for (auto it : model_tensors) {
std::string k_tensor = it.first;
struct ggml_tensor* weight = model_tensors[it.first];
size_t k_pos = k_tensor.find(".weight");
if (k_pos == std::string::npos) {
continue;
}
k_tensor = k_tensor.substr(0, k_pos);
replace_all_chars(k_tensor, '.', '_');
// LOG_DEBUG("k_tensor %s", k_tensor.c_str());
if (k_tensor == "model_diffusion_model_output_blocks_2_2_conv") { // fix for SDXL
k_tensor = "model_diffusion_model_output_blocks_2_1_conv";
}
std::string lora_up_name = "lora." + k_tensor + ".lora_up.weight";
std::string lora_down_name = "lora." + k_tensor + ".lora_down.weight";
std::string alpha_name = "lora." + k_tensor + ".alpha";
std::string scale_name = "lora." + k_tensor + ".scale";
ggml_tensor* lora_up = NULL;
ggml_tensor* lora_down = NULL;
if (lora_tensors.find(lora_up_name) != lora_tensors.end()) {
lora_up = lora_tensors[lora_up_name];
}
if (lora_tensors.find(lora_down_name) != lora_tensors.end()) {
lora_down = lora_tensors[lora_down_name];
}
if (lora_up == NULL || lora_down == NULL) {
continue;
}
applied_lora_tensors.insert(lora_up_name);
applied_lora_tensors.insert(lora_down_name);
applied_lora_tensors.insert(alpha_name);
applied_lora_tensors.insert(scale_name);
// calc_cale
int64_t dim = lora_down->ne[ggml_n_dims(lora_down) - 1];
float scale_value = 1.0f;
if (lora_tensors.find(scale_name) != lora_tensors.end()) {
scale_value = ggml_backend_tensor_get_f32(lora_tensors[scale_name]);
} else if (lora_tensors.find(alpha_name) != lora_tensors.end()) {
float alpha = ggml_backend_tensor_get_f32(lora_tensors[alpha_name]);
scale_value = alpha / dim;
}
scale_value *= multiplier;
// flat lora tensors to multiply it
int64_t lora_up_rows = lora_up->ne[ggml_n_dims(lora_up) - 1];
lora_up = ggml_reshape_2d(compute_ctx, lora_up, ggml_nelements(lora_up) / lora_up_rows, lora_up_rows);
int64_t lora_down_rows = lora_down->ne[ggml_n_dims(lora_down) - 1];
lora_down = ggml_reshape_2d(compute_ctx, lora_down, ggml_nelements(lora_down) / lora_down_rows, lora_down_rows);
// ggml_mul_mat requires tensor b transposed
lora_down = ggml_cont(compute_ctx, ggml_transpose(compute_ctx, lora_down));
struct ggml_tensor* updown = ggml_mul_mat(compute_ctx, lora_up, lora_down);
updown = ggml_cont(compute_ctx, ggml_transpose(compute_ctx, updown));
updown = ggml_reshape(compute_ctx, updown, weight);
GGML_ASSERT(ggml_nelements(updown) == ggml_nelements(weight));
updown = ggml_scale_inplace(compute_ctx, updown, scale_value);
ggml_tensor* final_weight;
// if (weight->type != GGML_TYPE_F32 && weight->type != GGML_TYPE_F16) {
// final_weight = ggml_new_tensor(compute_ctx, GGML_TYPE_F32, weight->n_dims, weight->ne);
// final_weight = ggml_cpy_inplace(compute_ctx, weight, final_weight);
// final_weight = ggml_add_inplace(compute_ctx, final_weight, updown);
// final_weight = ggml_cpy_inplace(compute_ctx, final_weight, weight);
// } else {
// final_weight = ggml_add_inplace(compute_ctx, weight, updown);
// }
final_weight = ggml_add_inplace(compute_ctx, weight, updown); // apply directly
ggml_build_forward_expand(gf, final_weight);
}
for (auto& kv : lora_tensors) {
if (applied_lora_tensors.find(kv.first) == applied_lora_tensors.end()) {
LOG_WARN("unused lora tensor %s", kv.first.c_str());
}
}
return gf;
}
void apply(std::map<std::string, struct ggml_tensor*> model_tensors, int n_threads) {
auto get_graph = [&]() -> struct ggml_cgraph* {
return build_graph(model_tensors);
};
GGMLModule::compute(get_graph, n_threads, true);
}
};
#endif // __LORA_HPP__