
* add controlnet to pipeline * add cli params * control strength cli param * cli param keep controlnet in cpu * add Textual Inversion * add canny preprocessor * refactor: change ggml_type_sizef to ggml_row_size * process hint once time * ignore the embedding name case --------- Co-authored-by: leejet <leejet714@gmail.com>
646 lines
24 KiB
C++
646 lines
24 KiB
C++
#ifndef __GGML_EXTEND_HPP__
|
||
#define __GGML_EXTEND_HPP__
|
||
|
||
#include <assert.h>
|
||
#include <inttypes.h>
|
||
#include <stdarg.h>
|
||
#include <algorithm>
|
||
#include <cstring>
|
||
#include <fstream>
|
||
#include <functional>
|
||
#include <iostream>
|
||
#include <iterator>
|
||
#include <map>
|
||
#include <random>
|
||
#include <regex>
|
||
#include <set>
|
||
#include <sstream>
|
||
#include <string>
|
||
#include <unordered_map>
|
||
#include <vector>
|
||
|
||
#include "ggml/ggml-alloc.h"
|
||
#include "ggml/ggml-backend.h"
|
||
#include "ggml/ggml.h"
|
||
|
||
#ifdef SD_USE_CUBLAS
|
||
#include "ggml-cuda.h"
|
||
#endif
|
||
|
||
#ifdef SD_USE_METAL
|
||
#include "ggml-metal.h"
|
||
#endif
|
||
|
||
#include "rng.hpp"
|
||
#include "util.h"
|
||
|
||
#define EPS 1e-05f
|
||
|
||
#ifndef __STATIC_INLINE__
|
||
#define __STATIC_INLINE__ static inline
|
||
#endif
|
||
|
||
__STATIC_INLINE__ void ggml_log_callback_default(ggml_log_level level, const char* text, void* user_data) {
|
||
(void)level;
|
||
(void)user_data;
|
||
fputs(text, stderr);
|
||
fflush(stderr);
|
||
}
|
||
|
||
__STATIC_INLINE__ void ggml_tensor_set_f32_randn(struct ggml_tensor* tensor, std::shared_ptr<RNG> rng) {
|
||
uint32_t n = (uint32_t)ggml_nelements(tensor);
|
||
std::vector<float> random_numbers = rng->randn(n);
|
||
for (uint32_t i = 0; i < n; i++) {
|
||
ggml_set_f32_1d(tensor, i, random_numbers[i]);
|
||
}
|
||
}
|
||
|
||
// set tensor[i, j, k, l]
|
||
// set tensor[l]
|
||
// set tensor[k, l]
|
||
// set tensor[j, k, l]
|
||
__STATIC_INLINE__ void ggml_tensor_set_f32(struct ggml_tensor* tensor, float value, int l, int k = 0, int j = 0, int i = 0) {
|
||
GGML_ASSERT(tensor->nb[0] == sizeof(float));
|
||
*(float*)((char*)(tensor->data) + i * tensor->nb[3] + j * tensor->nb[2] + k * tensor->nb[1] + l * tensor->nb[0]) = value;
|
||
}
|
||
|
||
__STATIC_INLINE__ float ggml_tensor_get_f32(const ggml_tensor* tensor, int l, int k = 0, int j = 0, int i = 0) {
|
||
// float value;
|
||
// ggml_backend_tensor_get(tensor, &value, i * tensor->nb[3] + j * tensor->nb[2] + k * tensor->nb[1] + l * tensor->nb[0], sizeof(float));
|
||
// return value;
|
||
GGML_ASSERT(tensor->nb[0] == sizeof(float));
|
||
return *(float*)((char*)(tensor->data) + i * tensor->nb[3] + j * tensor->nb[2] + k * tensor->nb[1] + l * tensor->nb[0]);
|
||
}
|
||
|
||
__STATIC_INLINE__ ggml_fp16_t ggml_tensor_get_f16(const ggml_tensor* tensor, int l, int k = 0, int j = 0, int i = 0) {
|
||
GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
|
||
return *(ggml_fp16_t*)((char*)(tensor->data) + i * tensor->nb[3] + j * tensor->nb[2] + k * tensor->nb[1] + l * tensor->nb[0]);
|
||
}
|
||
|
||
__STATIC_INLINE__ void print_ggml_tensor(struct ggml_tensor* tensor, bool shape_only = false) {
|
||
printf("shape(%zu, %zu, %zu, %zu)\n", tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]);
|
||
fflush(stdout);
|
||
if (shape_only) {
|
||
return;
|
||
}
|
||
int range = 3;
|
||
for (int i = 0; i < tensor->ne[3]; i++) {
|
||
if (i >= range && i + range < tensor->ne[3]) {
|
||
continue;
|
||
}
|
||
for (int j = 0; j < tensor->ne[2]; j++) {
|
||
if (j >= range && j + range < tensor->ne[2]) {
|
||
continue;
|
||
}
|
||
for (int k = 0; k < tensor->ne[1]; k++) {
|
||
if (k >= range && k + range < tensor->ne[1]) {
|
||
continue;
|
||
}
|
||
for (int l = 0; l < tensor->ne[0]; l++) {
|
||
if (l >= range && l + range < tensor->ne[0]) {
|
||
continue;
|
||
}
|
||
if (tensor->type == GGML_TYPE_F32) {
|
||
printf(" [%d, %d, %d, %d] = %f\n", i, j, k, l, ggml_tensor_get_f32(tensor, l, k, j, i));
|
||
} else if (tensor->type == GGML_TYPE_F16) {
|
||
printf(" [%d, %d, %d, %d] = %i\n", i, j, k, l, ggml_tensor_get_f16(tensor, l, k, j, i));
|
||
}
|
||
fflush(stdout);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
__STATIC_INLINE__ ggml_tensor* load_tensor_from_file(ggml_context* ctx, const std::string& file_path) {
|
||
std::ifstream file(file_path, std::ios::binary);
|
||
if (!file.is_open()) {
|
||
LOG_ERROR("failed to open '%s'", file_path.c_str());
|
||
return NULL;
|
||
}
|
||
int32_t n_dims;
|
||
int32_t length;
|
||
int32_t ttype;
|
||
|
||
file.read(reinterpret_cast<char*>(&n_dims), sizeof(n_dims));
|
||
file.read(reinterpret_cast<char*>(&length), sizeof(length));
|
||
file.read(reinterpret_cast<char*>(&ttype), sizeof(ttype));
|
||
|
||
if (file.eof()) {
|
||
LOG_ERROR("incomplete file '%s'", file_path.c_str());
|
||
return NULL;
|
||
}
|
||
|
||
int32_t nelements = 1;
|
||
int32_t ne[4] = {1, 1, 1, 1};
|
||
for (int i = 0; i < n_dims; ++i) {
|
||
file.read(reinterpret_cast<char*>(&ne[i]), sizeof(ne[i]));
|
||
nelements *= ne[i];
|
||
}
|
||
std::string name(length, 0);
|
||
file.read(&name[0], length);
|
||
ggml_tensor* tensor = ggml_new_tensor_4d(ctx, (ggml_type)ttype, ne[0], ne[1], ne[2], ne[3]);
|
||
const size_t bpe = ggml_type_size(ggml_type(ttype));
|
||
file.read(reinterpret_cast<char*>(tensor->data), ggml_nbytes(tensor));
|
||
return tensor;
|
||
}
|
||
|
||
// __STATIC_INLINE__ void save_tensor_to_file(const std::string& file_name, ggml_tensor* tensor, const std::string & name) {
|
||
// std::string file_name_ = file_name + ".tensor";
|
||
// std::string name_ = name;
|
||
// std::ofstream file("./" + file_name_, std::ios::binary);
|
||
// file.write(reinterpret_cast<char*>(&tensor->n_dims), sizeof(tensor->n_dims));
|
||
// int len = (int)name_.size();
|
||
// file.write(reinterpret_cast<char*>(&len), sizeof(len));
|
||
// int ttype = (int)tensor->type;
|
||
// file.write(reinterpret_cast<char*>(&ttype), sizeof(ttype));
|
||
// for (int i = 0; i < tensor->n_dims; ++i) {
|
||
// int ne_ = (int) tensor->ne[i];
|
||
// file.write(reinterpret_cast<char*>(&ne_), sizeof(ne_));
|
||
// }
|
||
// file.write(&name_[0], len);
|
||
// char* data = nullptr;
|
||
// file.write((char*)tensor->data, ggml_nbytes(tensor));
|
||
// file.close();
|
||
// }
|
||
|
||
__STATIC_INLINE__ void copy_ggml_tensor(struct ggml_tensor* dst, struct ggml_tensor* src) {
|
||
if (dst->type == src->type) {
|
||
dst->nb[0] = src->nb[0];
|
||
dst->nb[1] = src->nb[1];
|
||
dst->nb[2] = src->nb[2];
|
||
dst->nb[3] = src->nb[3];
|
||
|
||
memcpy(((char*)dst->data), ((char*)src->data), ggml_nbytes(dst));
|
||
return;
|
||
}
|
||
struct ggml_init_params params;
|
||
params.mem_size = 10 * 1024 * 1024; // for padding
|
||
params.mem_buffer = NULL;
|
||
params.no_alloc = false;
|
||
struct ggml_context* ctx = ggml_init(params);
|
||
if (!ctx) {
|
||
LOG_ERROR("ggml_init() failed");
|
||
return;
|
||
}
|
||
ggml_tensor* final = ggml_cpy_inplace(ctx, src, dst);
|
||
|
||
struct ggml_cgraph* graph = ggml_new_graph(ctx);
|
||
ggml_build_forward_expand(graph, final);
|
||
ggml_graph_compute_with_ctx(ctx, graph, 1);
|
||
ggml_free(ctx);
|
||
}
|
||
|
||
// SPECIAL OPERATIONS WITH TENSORS
|
||
|
||
__STATIC_INLINE__ uint8_t* sd_tensor_to_image(struct ggml_tensor* input) {
|
||
int64_t width = input->ne[0];
|
||
int64_t height = input->ne[1];
|
||
int64_t channels = input->ne[2];
|
||
GGML_ASSERT(channels == 3 && input->type == GGML_TYPE_F32);
|
||
uint8_t* image_data = (uint8_t*)malloc(width * height * channels);
|
||
for (int iy = 0; iy < height; iy++) {
|
||
for (int ix = 0; ix < width; ix++) {
|
||
for (int k = 0; k < channels; k++) {
|
||
float value = ggml_tensor_get_f32(input, ix, iy, k);
|
||
*(image_data + iy * width * channels + ix * channels + k) = (uint8_t)(value * 255.0f);
|
||
}
|
||
}
|
||
}
|
||
return image_data;
|
||
}
|
||
|
||
__STATIC_INLINE__ void sd_image_to_tensor(const uint8_t* image_data,
|
||
struct ggml_tensor* output) {
|
||
int64_t width = output->ne[0];
|
||
int64_t height = output->ne[1];
|
||
int64_t channels = output->ne[2];
|
||
GGML_ASSERT(channels == 3 && output->type == GGML_TYPE_F32);
|
||
for (int iy = 0; iy < height; iy++) {
|
||
for (int ix = 0; ix < width; ix++) {
|
||
for (int k = 0; k < channels; k++) {
|
||
int value = *(image_data + iy * width * channels + ix * channels + k);
|
||
ggml_tensor_set_f32(output, value / 255.0f, ix, iy, k);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
__STATIC_INLINE__ void ggml_split_tensor_2d(struct ggml_tensor* input,
|
||
struct ggml_tensor* output,
|
||
int x,
|
||
int y) {
|
||
int64_t width = output->ne[0];
|
||
int64_t height = output->ne[1];
|
||
int64_t channels = output->ne[2];
|
||
GGML_ASSERT(input->type == GGML_TYPE_F32 && output->type == GGML_TYPE_F32);
|
||
for (int iy = 0; iy < height; iy++) {
|
||
for (int ix = 0; ix < width; ix++) {
|
||
for (int k = 0; k < channels; k++) {
|
||
float value = ggml_tensor_get_f32(input, ix + x, iy + y, k);
|
||
ggml_tensor_set_f32(output, value, ix, iy, k);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
__STATIC_INLINE__ void ggml_merge_tensor_2d(struct ggml_tensor* input,
|
||
struct ggml_tensor* output,
|
||
int x,
|
||
int y,
|
||
int overlap) {
|
||
int64_t width = input->ne[0];
|
||
int64_t height = input->ne[1];
|
||
int64_t channels = input->ne[2];
|
||
GGML_ASSERT(input->type == GGML_TYPE_F32 && output->type == GGML_TYPE_F32);
|
||
for (int iy = 0; iy < height; iy++) {
|
||
for (int ix = 0; ix < width; ix++) {
|
||
for (int k = 0; k < channels; k++) {
|
||
float new_value = ggml_tensor_get_f32(input, ix, iy, k);
|
||
if (overlap > 0) { // blend colors in overlapped area
|
||
float old_value = ggml_tensor_get_f32(output, x + ix, y + iy, k);
|
||
if (x > 0 && ix < overlap) { // in overlapped horizontal
|
||
ggml_tensor_set_f32(output, old_value + (new_value - old_value) * (ix / (1.0f * overlap)), x + ix, y + iy, k);
|
||
continue;
|
||
}
|
||
if (y > 0 && iy < overlap) { // in overlapped vertical
|
||
ggml_tensor_set_f32(output, old_value + (new_value - old_value) * (iy / (1.0f * overlap)), x + ix, y + iy, k);
|
||
continue;
|
||
}
|
||
}
|
||
ggml_tensor_set_f32(output, new_value, x + ix, y + iy, k);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
__STATIC_INLINE__ float ggml_tensor_mean(struct ggml_tensor* src) {
|
||
float mean = 0.0f;
|
||
int64_t nelements = ggml_nelements(src);
|
||
float* data = (float*)src->data;
|
||
for (int i = 0; i < nelements; i++) {
|
||
mean += data[i] / nelements * 1.0f;
|
||
}
|
||
return mean;
|
||
}
|
||
|
||
// a = a+b
|
||
__STATIC_INLINE__ void ggml_tensor_add(struct ggml_tensor* a, struct ggml_tensor* b) {
|
||
GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
|
||
int64_t nelements = ggml_nelements(a);
|
||
float* vec_a = (float*)a->data;
|
||
float* vec_b = (float*)b->data;
|
||
for (int i = 0; i < nelements; i++) {
|
||
vec_a[i] = vec_a[i] + vec_b[i];
|
||
}
|
||
}
|
||
|
||
__STATIC_INLINE__ void ggml_tensor_scale(struct ggml_tensor* src, float scale) {
|
||
int64_t nelements = ggml_nelements(src);
|
||
float* data = (float*)src->data;
|
||
for (int i = 0; i < nelements; i++) {
|
||
data[i] = data[i] * scale;
|
||
}
|
||
}
|
||
|
||
__STATIC_INLINE__ void ggml_tensor_clamp(struct ggml_tensor* src, float min, float max) {
|
||
int64_t nelements = ggml_nelements(src);
|
||
float* data = (float*)src->data;
|
||
for (int i = 0; i < nelements; i++) {
|
||
float val = data[i];
|
||
data[i] = val < min ? min : (val > max ? max : val);
|
||
}
|
||
}
|
||
|
||
// convert values from [0, 1] to [-1, 1]
|
||
__STATIC_INLINE__ void ggml_tensor_scale_input(struct ggml_tensor* src) {
|
||
int64_t nelements = ggml_nelements(src);
|
||
float* data = (float*)src->data;
|
||
for (int i = 0; i < nelements; i++) {
|
||
float val = data[i];
|
||
data[i] = val * 2.0f - 1.0f;
|
||
}
|
||
}
|
||
|
||
// convert values from [-1, 1] to [0, 1]
|
||
__STATIC_INLINE__ void ggml_tensor_scale_output(struct ggml_tensor* src) {
|
||
int64_t nelements = ggml_nelements(src);
|
||
float* data = (float*)src->data;
|
||
for (int i = 0; i < nelements; i++) {
|
||
float val = data[i];
|
||
data[i] = (val + 1.0f) * 0.5f;
|
||
}
|
||
}
|
||
|
||
typedef std::function<void(ggml_tensor*, ggml_tensor*, bool)> on_tile_process;
|
||
|
||
// Tiling
|
||
__STATIC_INLINE__ void sd_tiling(ggml_tensor* input, ggml_tensor* output, const int scale, const int tile_size, const float tile_overlap_factor, on_tile_process on_processing) {
|
||
int input_width = (int)input->ne[0];
|
||
int input_height = (int)input->ne[1];
|
||
int output_width = (int)output->ne[0];
|
||
int output_height = (int)output->ne[1];
|
||
GGML_ASSERT(input_width % 2 == 0 && input_height % 2 == 0 && output_width % 2 == 0 && output_height % 2 == 0); // should be multiple of 2
|
||
|
||
int tile_overlap = (int32_t)(tile_size * tile_overlap_factor);
|
||
int non_tile_overlap = tile_size - tile_overlap;
|
||
|
||
struct ggml_init_params params = {};
|
||
params.mem_size += tile_size * tile_size * input->ne[2] * sizeof(float); // input chunk
|
||
params.mem_size += (tile_size * scale) * (tile_size * scale) * output->ne[2] * sizeof(float); // output chunk
|
||
params.mem_size += 3 * ggml_tensor_overhead();
|
||
params.mem_buffer = NULL;
|
||
params.no_alloc = false;
|
||
|
||
LOG_DEBUG("tile work buffer size: %.2f MB", params.mem_size / 1024.f / 1024.f);
|
||
|
||
// draft context
|
||
struct ggml_context* tiles_ctx = ggml_init(params);
|
||
if (!tiles_ctx) {
|
||
LOG_ERROR("ggml_init() failed");
|
||
return;
|
||
}
|
||
|
||
// tiling
|
||
ggml_tensor* input_tile = ggml_new_tensor_4d(tiles_ctx, GGML_TYPE_F32, tile_size, tile_size, input->ne[2], 1);
|
||
ggml_tensor* output_tile = ggml_new_tensor_4d(tiles_ctx, GGML_TYPE_F32, tile_size * scale, tile_size * scale, output->ne[2], 1);
|
||
on_processing(input_tile, NULL, true);
|
||
int num_tiles = (input_width * input_height) / (non_tile_overlap * non_tile_overlap);
|
||
LOG_INFO("processing %i tiles", num_tiles);
|
||
pretty_progress(1, num_tiles, 0.0f);
|
||
int tile_count = 1;
|
||
bool last_y = false, last_x = false;
|
||
float last_time = 0.0f;
|
||
for (int y = 0; y < input_height && !last_y; y += non_tile_overlap) {
|
||
if (y + tile_size >= input_height) {
|
||
y = input_height - tile_size;
|
||
last_y = true;
|
||
}
|
||
for (int x = 0; x < input_width && !last_x; x += non_tile_overlap) {
|
||
if (x + tile_size >= input_width) {
|
||
x = input_width - tile_size;
|
||
last_x = true;
|
||
}
|
||
int64_t t1 = ggml_time_ms();
|
||
ggml_split_tensor_2d(input, input_tile, x, y);
|
||
on_processing(input_tile, output_tile, false);
|
||
ggml_merge_tensor_2d(output_tile, output, x * scale, y * scale, tile_overlap * scale);
|
||
int64_t t2 = ggml_time_ms();
|
||
last_time = (t2 - t1) / 1000.0f;
|
||
pretty_progress(tile_count, num_tiles, last_time);
|
||
tile_count++;
|
||
}
|
||
last_x = false;
|
||
}
|
||
if (tile_count < num_tiles) {
|
||
pretty_progress(num_tiles, num_tiles, last_time);
|
||
}
|
||
}
|
||
|
||
__STATIC_INLINE__ struct ggml_tensor* ggml_group_norm_32(struct ggml_context* ctx,
|
||
struct ggml_tensor* a) {
|
||
return ggml_group_norm(ctx, a, 32);
|
||
}
|
||
|
||
__STATIC_INLINE__ struct ggml_tensor* ggml_nn_linear(struct ggml_context* ctx,
|
||
struct ggml_tensor* x,
|
||
struct ggml_tensor* w,
|
||
struct ggml_tensor* b) {
|
||
x = ggml_mul_mat(ctx, w, x);
|
||
x = ggml_add(ctx, x, b);
|
||
return x;
|
||
}
|
||
|
||
// w: [OC,IC, KH, KW]
|
||
// x: [N, IC, IH, IW]
|
||
// b: [OC,]
|
||
// result: [N, OC, OH, OW]
|
||
__STATIC_INLINE__ struct ggml_tensor* ggml_nn_conv_2d(struct ggml_context* ctx,
|
||
struct ggml_tensor* x,
|
||
struct ggml_tensor* w,
|
||
struct ggml_tensor* b,
|
||
int s0 = 1,
|
||
int s1 = 1,
|
||
int p0 = 0,
|
||
int p1 = 0,
|
||
int d0 = 1,
|
||
int d1 = 1) {
|
||
x = ggml_conv_2d(ctx, w, x, s0, s1, p0, p1, d0, d1);
|
||
if (b != NULL) {
|
||
b = ggml_reshape_4d(ctx, b, 1, 1, b->ne[0], 1);
|
||
x = ggml_add(ctx, x, b);
|
||
}
|
||
return x;
|
||
}
|
||
|
||
__STATIC_INLINE__ struct ggml_tensor* ggml_nn_layer_norm(struct ggml_context* ctx,
|
||
struct ggml_tensor* x,
|
||
struct ggml_tensor* w,
|
||
struct ggml_tensor* b,
|
||
float eps = EPS) {
|
||
x = ggml_norm(ctx, x, eps);
|
||
x = ggml_mul(ctx, x, w);
|
||
x = ggml_add(ctx, x, b);
|
||
return x;
|
||
}
|
||
|
||
__STATIC_INLINE__ struct ggml_tensor* ggml_nn_group_norm(struct ggml_context* ctx,
|
||
struct ggml_tensor* x,
|
||
struct ggml_tensor* w,
|
||
struct ggml_tensor* b,
|
||
int num_groups = 32) {
|
||
if (ggml_n_dims(x) >= 3) {
|
||
w = ggml_reshape_4d(ctx, w, 1, 1, w->ne[0], 1);
|
||
b = ggml_reshape_4d(ctx, b, 1, 1, b->ne[0], 1);
|
||
}
|
||
|
||
x = ggml_group_norm(ctx, x, num_groups);
|
||
x = ggml_mul(ctx, x, w);
|
||
x = ggml_add(ctx, x, b);
|
||
return x;
|
||
}
|
||
|
||
__STATIC_INLINE__ void ggml_backend_tensor_get_and_sync(ggml_backend_t backend, const struct ggml_tensor* tensor, void* data, size_t offset, size_t size) {
|
||
#ifdef SD_USE_CUBLAS
|
||
if(!ggml_backend_is_cpu(backend)) {
|
||
ggml_backend_tensor_get_async(backend, tensor, data, offset, size);
|
||
ggml_backend_synchronize(backend);
|
||
} else {
|
||
ggml_backend_tensor_get(tensor, data, offset, size);
|
||
}
|
||
#else
|
||
ggml_backend_tensor_get(tensor, data, offset, size);
|
||
#endif
|
||
}
|
||
|
||
__STATIC_INLINE__ float ggml_backend_tensor_get_f32(ggml_tensor* tensor) {
|
||
GGML_ASSERT(tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_F16);
|
||
float value;
|
||
if (tensor->type == GGML_TYPE_F32) {
|
||
ggml_backend_tensor_get(tensor, &value, 0, sizeof(value));
|
||
} else { // GGML_TYPE_F16
|
||
ggml_fp16_t f16_value;
|
||
ggml_backend_tensor_get(tensor, &f16_value, 0, sizeof(f16_value));
|
||
value = ggml_fp16_to_fp32(f16_value);
|
||
}
|
||
return value;
|
||
}
|
||
|
||
// Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
|
||
__STATIC_INLINE__ void set_timestep_embedding(struct ggml_tensor* timesteps, struct ggml_tensor* embedding, int dim, int max_period = 10000) {
|
||
// timesteps: [N,]
|
||
// embedding: [dim, N]
|
||
int half = dim / 2;
|
||
std::vector<float> freqs(half);
|
||
for (int i = 0; i < half; ++i) {
|
||
freqs[i] = (float)std::exp(-std::log(max_period) * i / half);
|
||
}
|
||
for (int i = 0; i < timesteps->ne[0]; ++i) {
|
||
for (int j = 0; j < half; ++j) {
|
||
float arg = ggml_get_f32_1d(timesteps, i) * freqs[j];
|
||
ggml_tensor_set_f32(embedding, std::cos(arg), j, i);
|
||
ggml_tensor_set_f32(embedding, std::sin(arg), j + half, i);
|
||
}
|
||
if (dim % 2 != 0) {
|
||
*(float*)((char*)embedding->data + i * embedding->nb[1] + dim * embedding->nb[0]) = 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
__STATIC_INLINE__ struct ggml_tensor* new_timestep_embedding(struct ggml_context* ctx,
|
||
struct ggml_allocr* allocr,
|
||
struct ggml_tensor* timesteps,
|
||
int dim,
|
||
int max_period = 10000) {
|
||
// timesteps: [N,]
|
||
// embedding: [dim, N]
|
||
int acutual_dim = dim;
|
||
if (dim % 2 != 0) {
|
||
acutual_dim = dim + 1;
|
||
}
|
||
struct ggml_tensor* embedding = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, acutual_dim, timesteps->ne[0]);
|
||
if (allocr != NULL) {
|
||
ggml_allocr_alloc(allocr, embedding);
|
||
}
|
||
if (allocr != NULL && !ggml_allocr_is_measure(allocr)) {
|
||
set_timestep_embedding(timesteps, embedding, dim, max_period);
|
||
}
|
||
return embedding;
|
||
}
|
||
|
||
struct GGMLModule {
|
||
typedef std::function<struct ggml_cgraph*()> get_graph_cb_t;
|
||
|
||
std::string name = "ggml module";
|
||
struct ggml_context* params_ctx = NULL;
|
||
size_t params_buffer_size = 0;
|
||
size_t compute_buffer_size = 0;
|
||
ggml_backend_buffer_t params_buffer = NULL;
|
||
ggml_backend_buffer_t compute_buffer = NULL; // for compute
|
||
struct ggml_allocr* compute_allocr = NULL;
|
||
|
||
ggml_type wtype = GGML_TYPE_F32;
|
||
ggml_backend_t backend = NULL;
|
||
|
||
virtual size_t calculate_mem_size() = 0;
|
||
virtual size_t get_num_tensors() = 0;
|
||
|
||
bool alloc_params_buffer(ggml_backend_t backend_, ggml_type wtype_ = GGML_TYPE_F32) {
|
||
backend = backend_;
|
||
wtype = wtype_;
|
||
params_buffer_size = 4 * 1024 * 1024; // 10 MB, for padding
|
||
params_buffer_size += calculate_mem_size();
|
||
size_t num_tensors = get_num_tensors();
|
||
|
||
LOG_DEBUG("%s params backend buffer size = % 6.2f MB (%i tensors)",
|
||
name.c_str(), params_buffer_size / (1024.0 * 1024.0), num_tensors);
|
||
|
||
struct ggml_init_params params;
|
||
params.mem_size = static_cast<size_t>(num_tensors * ggml_tensor_overhead()) + 1 * 1024 * 1024;
|
||
params.mem_buffer = NULL;
|
||
params.no_alloc = true;
|
||
// LOG_DEBUG("mem_size %u ", params.mem_size);
|
||
|
||
params_ctx = ggml_init(params);
|
||
if (!params_ctx) {
|
||
LOG_ERROR("ggml_init() failed");
|
||
return false;
|
||
}
|
||
|
||
params_buffer = ggml_backend_alloc_buffer(backend, params_buffer_size);
|
||
return true;
|
||
}
|
||
|
||
void free_params_buffer() {
|
||
if (params_ctx != NULL) {
|
||
ggml_free(params_ctx);
|
||
params_ctx = NULL;
|
||
}
|
||
|
||
if (params_buffer != NULL) {
|
||
ggml_backend_buffer_free(params_buffer);
|
||
params_buffer = NULL;
|
||
}
|
||
}
|
||
|
||
~GGMLModule() {
|
||
free_params_buffer();
|
||
}
|
||
|
||
void alloc_compute_buffer(get_graph_cb_t get_graph) {
|
||
if (compute_buffer_size == 0) {
|
||
// alignment required by the backend
|
||
compute_allocr = ggml_allocr_new_measure_from_backend(backend);
|
||
|
||
struct ggml_cgraph* gf = get_graph();
|
||
|
||
// compute the required memory
|
||
compute_buffer_size = ggml_allocr_alloc_graph(compute_allocr, gf) + 1024 * 1024;
|
||
|
||
// recreate the allocator with the required memory
|
||
ggml_allocr_free(compute_allocr);
|
||
|
||
LOG_DEBUG("%s compute buffer size: %.2f MB", name.c_str(), compute_buffer_size / 1024.0 / 1024.0);
|
||
}
|
||
|
||
compute_buffer = ggml_backend_alloc_buffer(backend, compute_buffer_size);
|
||
compute_allocr = ggml_allocr_new_from_buffer(compute_buffer);
|
||
}
|
||
|
||
void compute(get_graph_cb_t get_graph, int n_threads, struct ggml_tensor* output = NULL) {
|
||
ggml_allocr_reset(compute_allocr);
|
||
|
||
struct ggml_cgraph* gf = get_graph();
|
||
|
||
ggml_allocr_alloc_graph(compute_allocr, gf);
|
||
|
||
if (ggml_backend_is_cpu(backend)) {
|
||
ggml_backend_cpu_set_n_threads(backend, n_threads);
|
||
}
|
||
|
||
#ifdef SD_USE_METAL
|
||
if (ggml_backend_is_metal(backend)) {
|
||
ggml_backend_metal_set_n_cb(backend, n_threads);
|
||
}
|
||
#endif
|
||
|
||
ggml_backend_graph_compute(backend, gf);
|
||
|
||
#ifdef GGML_PERF
|
||
ggml_graph_print(gf);
|
||
#endif
|
||
|
||
if (output != NULL) {
|
||
ggml_backend_tensor_get_and_sync(backend, gf->nodes[gf->n_nodes - 1], output->data, 0, ggml_nbytes(output));
|
||
}
|
||
}
|
||
|
||
void free_compute_buffer() {
|
||
ggml_allocr_free(compute_allocr);
|
||
ggml_backend_buffer_free(compute_buffer);
|
||
compute_allocr = NULL;
|
||
compute_buffer_size = 0;
|
||
}
|
||
};
|
||
|
||
#endif // __GGML_EXTEND__HPP__
|