stable-diffusion.cpp/ggml_extend.hpp
2024-01-05 23:18:41 +08:00

642 lines
24 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#ifndef __GGML_EXTEND_HPP__
#define __GGML_EXTEND_HPP__
#include <assert.h>
#include <inttypes.h>
#include <stdarg.h>
#include <algorithm>
#include <cstring>
#include <fstream>
#include <functional>
#include <iostream>
#include <iterator>
#include <map>
#include <random>
#include <regex>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <vector>
#include "ggml/ggml-alloc.h"
#include "ggml/ggml-backend.h"
#include "ggml/ggml.h"
#ifdef SD_USE_CUBLAS
#include "ggml-cuda.h"
#endif
#ifdef SD_USE_METAL
#include "ggml-metal.h"
#endif
#include "rng.hpp"
#include "util.h"
#define EPS 1e-05f
#ifndef __STATIC_INLINE__
#define __STATIC_INLINE__ static inline
#endif
__STATIC_INLINE__ void ggml_log_callback_default(ggml_log_level level, const char* text, void* user_data) {
(void)level;
(void)user_data;
fputs(text, stderr);
fflush(stderr);
}
__STATIC_INLINE__ void ggml_tensor_set_f32_randn(struct ggml_tensor* tensor, std::shared_ptr<RNG> rng) {
uint32_t n = (uint32_t)ggml_nelements(tensor);
std::vector<float> random_numbers = rng->randn(n);
for (uint32_t i = 0; i < n; i++) {
ggml_set_f32_1d(tensor, i, random_numbers[i]);
}
}
// set tensor[i, j, k, l]
// set tensor[l]
// set tensor[k, l]
// set tensor[j, k, l]
__STATIC_INLINE__ void ggml_tensor_set_f32(struct ggml_tensor* tensor, float value, int l, int k = 0, int j = 0, int i = 0) {
GGML_ASSERT(tensor->nb[0] == sizeof(float));
*(float*)((char*)(tensor->data) + i * tensor->nb[3] + j * tensor->nb[2] + k * tensor->nb[1] + l * tensor->nb[0]) = value;
}
__STATIC_INLINE__ float ggml_tensor_get_f32(const ggml_tensor* tensor, int l, int k = 0, int j = 0, int i = 0) {
// float value;
// ggml_backend_tensor_get(tensor, &value, i * tensor->nb[3] + j * tensor->nb[2] + k * tensor->nb[1] + l * tensor->nb[0], sizeof(float));
// return value;
GGML_ASSERT(tensor->nb[0] == sizeof(float));
return *(float*)((char*)(tensor->data) + i * tensor->nb[3] + j * tensor->nb[2] + k * tensor->nb[1] + l * tensor->nb[0]);
}
__STATIC_INLINE__ ggml_fp16_t ggml_tensor_get_f16(const ggml_tensor* tensor, int l, int k = 0, int j = 0, int i = 0) {
GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
return *(ggml_fp16_t*)((char*)(tensor->data) + i * tensor->nb[3] + j * tensor->nb[2] + k * tensor->nb[1] + l * tensor->nb[0]);
}
__STATIC_INLINE__ void print_ggml_tensor(struct ggml_tensor* tensor, bool shape_only = false) {
printf("shape(%zu, %zu, %zu, %zu)\n", tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]);
fflush(stdout);
if (shape_only) {
return;
}
int range = 3;
for (int i = 0; i < tensor->ne[3]; i++) {
if (i >= range && i + range < tensor->ne[3]) {
continue;
}
for (int j = 0; j < tensor->ne[2]; j++) {
if (j >= range && j + range < tensor->ne[2]) {
continue;
}
for (int k = 0; k < tensor->ne[1]; k++) {
if (k >= range && k + range < tensor->ne[1]) {
continue;
}
for (int l = 0; l < tensor->ne[0]; l++) {
if (l >= range && l + range < tensor->ne[0]) {
continue;
}
if (tensor->type == GGML_TYPE_F32) {
printf(" [%d, %d, %d, %d] = %f\n", i, j, k, l, ggml_tensor_get_f32(tensor, l, k, j, i));
} else if (tensor->type == GGML_TYPE_F16) {
printf(" [%d, %d, %d, %d] = %i\n", i, j, k, l, ggml_tensor_get_f16(tensor, l, k, j, i));
}
fflush(stdout);
}
}
}
}
}
__STATIC_INLINE__ ggml_tensor* load_tensor_from_file(ggml_context* ctx, const std::string& file_path) {
std::ifstream file(file_path, std::ios::binary);
if (!file.is_open()) {
LOG_ERROR("failed to open '%s'", file_path.c_str());
return NULL;
}
int32_t n_dims;
int32_t length;
int32_t ttype;
file.read(reinterpret_cast<char*>(&n_dims), sizeof(n_dims));
file.read(reinterpret_cast<char*>(&length), sizeof(length));
file.read(reinterpret_cast<char*>(&ttype), sizeof(ttype));
if (file.eof()) {
LOG_ERROR("incomplete file '%s'", file_path.c_str());
return NULL;
}
int32_t nelements = 1;
int32_t ne[4] = {1, 1, 1, 1};
for (int i = 0; i < n_dims; ++i) {
file.read(reinterpret_cast<char*>(&ne[i]), sizeof(ne[i]));
nelements *= ne[i];
}
std::string name(length, 0);
file.read(&name[0], length);
ggml_tensor* tensor = ggml_new_tensor_4d(ctx, (ggml_type)ttype, ne[0], ne[1], ne[2], ne[3]);
const size_t bpe = ggml_type_size(ggml_type(ttype));
file.read(reinterpret_cast<char*>(tensor->data), ggml_nbytes(tensor));
return tensor;
}
// __STATIC_INLINE__ void save_tensor_to_file(const std::string& file_name, ggml_tensor* tensor, const std::string & name) {
// std::string file_name_ = file_name + ".tensor";
// std::string name_ = name;
// std::ofstream file("./" + file_name_, std::ios::binary);
// file.write(reinterpret_cast<char*>(&tensor->n_dims), sizeof(tensor->n_dims));
// int len = (int)name_.size();
// file.write(reinterpret_cast<char*>(&len), sizeof(len));
// int ttype = (int)tensor->type;
// file.write(reinterpret_cast<char*>(&ttype), sizeof(ttype));
// for (int i = 0; i < tensor->n_dims; ++i) {
// int ne_ = (int) tensor->ne[i];
// file.write(reinterpret_cast<char*>(&ne_), sizeof(ne_));
// }
// file.write(&name_[0], len);
// char* data = nullptr;
// file.write((char*)tensor->data, ggml_nbytes(tensor));
// file.close();
// }
__STATIC_INLINE__ void copy_ggml_tensor(struct ggml_tensor* dst, struct ggml_tensor* src) {
if (dst->type == src->type) {
dst->nb[0] = src->nb[0];
dst->nb[1] = src->nb[1];
dst->nb[2] = src->nb[2];
dst->nb[3] = src->nb[3];
memcpy(((char*)dst->data), ((char*)src->data), ggml_nbytes(dst));
return;
}
struct ggml_init_params params;
params.mem_size = 10 * 1024 * 1024; // for padding
params.mem_buffer = NULL;
params.no_alloc = false;
struct ggml_context* ctx = ggml_init(params);
if (!ctx) {
LOG_ERROR("ggml_init() failed");
return;
}
ggml_tensor* final = ggml_cpy_inplace(ctx, src, dst);
struct ggml_cgraph* graph = ggml_new_graph(ctx);
ggml_build_forward_expand(graph, final);
ggml_graph_compute_with_ctx(ctx, graph, 1);
ggml_free(ctx);
}
// SPECIAL OPERATIONS WITH TENSORS
__STATIC_INLINE__ uint8_t* sd_tensor_to_image(struct ggml_tensor* input) {
int64_t width = input->ne[0];
int64_t height = input->ne[1];
int64_t channels = input->ne[2];
GGML_ASSERT(channels == 3 && input->type == GGML_TYPE_F32);
uint8_t* image_data = (uint8_t*)malloc(width * height * channels);
for (int iy = 0; iy < height; iy++) {
for (int ix = 0; ix < width; ix++) {
for (int k = 0; k < channels; k++) {
float value = ggml_tensor_get_f32(input, ix, iy, k);
*(image_data + iy * width * channels + ix * channels + k) = (uint8_t)(value * 255.0f);
}
}
}
return image_data;
}
__STATIC_INLINE__ void sd_image_to_tensor(const uint8_t* image_data,
struct ggml_tensor* output) {
int64_t width = output->ne[0];
int64_t height = output->ne[1];
int64_t channels = output->ne[2];
GGML_ASSERT(channels == 3 && output->type == GGML_TYPE_F32);
for (int iy = 0; iy < height; iy++) {
for (int ix = 0; ix < width; ix++) {
for (int k = 0; k < channels; k++) {
float value = *(image_data + iy * width * channels + ix * channels + k);
ggml_tensor_set_f32(output, value / 255.0f, ix, iy, k);
}
}
}
}
__STATIC_INLINE__ void ggml_split_tensor_2d(struct ggml_tensor* input,
struct ggml_tensor* output,
int x,
int y) {
int64_t width = output->ne[0];
int64_t height = output->ne[1];
int64_t channels = output->ne[2];
GGML_ASSERT(input->type == GGML_TYPE_F32 && output->type == GGML_TYPE_F32);
for (int iy = 0; iy < height; iy++) {
for (int ix = 0; ix < width; ix++) {
for (int k = 0; k < channels; k++) {
float value = ggml_tensor_get_f32(input, ix + x, iy + y, k);
ggml_tensor_set_f32(output, value, ix, iy, k);
}
}
}
}
__STATIC_INLINE__ void ggml_merge_tensor_2d(struct ggml_tensor* input,
struct ggml_tensor* output,
int x,
int y,
int overlap) {
int64_t width = input->ne[0];
int64_t height = input->ne[1];
int64_t channels = input->ne[2];
GGML_ASSERT(input->type == GGML_TYPE_F32 && output->type == GGML_TYPE_F32);
for (int iy = 0; iy < height; iy++) {
for (int ix = 0; ix < width; ix++) {
for (int k = 0; k < channels; k++) {
float new_value = ggml_tensor_get_f32(input, ix, iy, k);
if (overlap > 0) { // blend colors in overlapped area
float old_value = ggml_tensor_get_f32(output, x + ix, y + iy, k);
if (x > 0 && ix < overlap) { // in overlapped horizontal
ggml_tensor_set_f32(output, old_value + (new_value - old_value) * (ix / (1.0f * overlap)), x + ix, y + iy, k);
continue;
}
if (y > 0 && iy < overlap) { // in overlapped vertical
ggml_tensor_set_f32(output, old_value + (new_value - old_value) * (iy / (1.0f * overlap)), x + ix, y + iy, k);
continue;
}
}
ggml_tensor_set_f32(output, new_value, x + ix, y + iy, k);
}
}
}
}
__STATIC_INLINE__ float ggml_tensor_mean(struct ggml_tensor* src) {
float mean = 0.0f;
int64_t nelements = ggml_nelements(src);
float* data = (float*)src->data;
for (int i = 0; i < nelements; i++) {
mean += data[i] / nelements * 1.0f;
}
return mean;
}
// a = a+b
__STATIC_INLINE__ void ggml_tensor_add(struct ggml_tensor* a, struct ggml_tensor* b) {
GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
int64_t nelements = ggml_nelements(a);
float* vec_a = (float*)a->data;
float* vec_b = (float*)b->data;
for (int i = 0; i < nelements; i++) {
vec_a[i] = vec_a[i] + vec_b[i];
}
}
__STATIC_INLINE__ void ggml_tensor_scale(struct ggml_tensor* src, float scale) {
int64_t nelements = ggml_nelements(src);
float* data = (float*)src->data;
for (int i = 0; i < nelements; i++) {
data[i] = data[i] * scale;
}
}
__STATIC_INLINE__ void ggml_tensor_clamp(struct ggml_tensor* src, float min, float max) {
int64_t nelements = ggml_nelements(src);
float* data = (float*)src->data;
for (int i = 0; i < nelements; i++) {
float val = data[i];
data[i] = val < min ? min : (val > max ? max : val);
}
}
// convert values from [0, 1] to [-1, 1]
__STATIC_INLINE__ void ggml_tensor_scale_input(struct ggml_tensor* src) {
int64_t nelements = ggml_nelements(src);
float* data = (float*)src->data;
for (int i = 0; i < nelements; i++) {
float val = data[i];
data[i] = val * 2.0f - 1.0f;
}
}
// convert values from [-1, 1] to [0, 1]
__STATIC_INLINE__ void ggml_tensor_scale_output(struct ggml_tensor* src) {
int64_t nelements = ggml_nelements(src);
float* data = (float*)src->data;
for (int i = 0; i < nelements; i++) {
float val = data[i];
data[i] = (val + 1.0f) * 0.5f;
}
}
typedef std::function<void(ggml_tensor*, ggml_tensor*, bool)> on_tile_process;
// Tiling
__STATIC_INLINE__ void sd_tiling(ggml_tensor* input, ggml_tensor* output, const int scale, const int tile_size, const float tile_overlap_factor, on_tile_process on_processing) {
int input_width = (int)input->ne[0];
int input_height = (int)input->ne[1];
int output_width = (int)output->ne[0];
int output_height = (int)output->ne[1];
GGML_ASSERT(input_width % 2 == 0 && input_height % 2 == 0 && output_width % 2 == 0 && output_height % 2 == 0); // should be multiple of 2
int tile_overlap = (int32_t)(tile_size * tile_overlap_factor);
int non_tile_overlap = tile_size - tile_overlap;
struct ggml_init_params params = {};
params.mem_size += tile_size * tile_size * input->ne[2] * sizeof(float); // input chunk
params.mem_size += (tile_size * scale) * (tile_size * scale) * output->ne[2] * sizeof(float); // output chunk
params.mem_size += 3 * ggml_tensor_overhead();
params.mem_buffer = NULL;
params.no_alloc = false;
LOG_DEBUG("tile work buffer size: %.2f MB", params.mem_size / 1024.f / 1024.f);
// draft context
struct ggml_context* tiles_ctx = ggml_init(params);
if (!tiles_ctx) {
LOG_ERROR("ggml_init() failed");
return;
}
// tiling
ggml_tensor* input_tile = ggml_new_tensor_4d(tiles_ctx, GGML_TYPE_F32, tile_size, tile_size, input->ne[2], 1);
ggml_tensor* output_tile = ggml_new_tensor_4d(tiles_ctx, GGML_TYPE_F32, tile_size * scale, tile_size * scale, output->ne[2], 1);
on_processing(input_tile, NULL, true);
int num_tiles = (input_width * input_height) / (non_tile_overlap * non_tile_overlap);
LOG_INFO("processing %i tiles", num_tiles);
pretty_progress(1, num_tiles, 0.0f);
int tile_count = 1;
bool last_y = false, last_x = false;
float last_time = 0.0f;
for (int y = 0; y < input_height && !last_y; y += non_tile_overlap) {
if (y + tile_size >= input_height) {
y = input_height - tile_size;
last_y = true;
}
for (int x = 0; x < input_width && !last_x; x += non_tile_overlap) {
if (x + tile_size >= input_width) {
x = input_width - tile_size;
last_x = true;
}
int64_t t1 = ggml_time_ms();
ggml_split_tensor_2d(input, input_tile, x, y);
on_processing(input_tile, output_tile, false);
ggml_merge_tensor_2d(output_tile, output, x * scale, y * scale, tile_overlap * scale);
int64_t t2 = ggml_time_ms();
last_time = (t2 - t1) / 1000.0f;
pretty_progress(tile_count, num_tiles, last_time);
tile_count++;
}
last_x = false;
}
if (tile_count < num_tiles) {
pretty_progress(num_tiles, num_tiles, last_time);
}
}
__STATIC_INLINE__ struct ggml_tensor* ggml_group_norm_32(struct ggml_context* ctx,
struct ggml_tensor* a) {
return ggml_group_norm(ctx, a, 32);
}
__STATIC_INLINE__ struct ggml_tensor* ggml_nn_linear(struct ggml_context* ctx,
struct ggml_tensor* x,
struct ggml_tensor* w,
struct ggml_tensor* b) {
x = ggml_mul_mat(ctx, w, x);
x = ggml_add(ctx, x, b);
return x;
}
// w: [OCIC, KH, KW]
// x: [N, IC, IH, IW]
// b: [OC,]
// result: [N, OC, OH, OW]
__STATIC_INLINE__ struct ggml_tensor* ggml_nn_conv_2d(struct ggml_context* ctx,
struct ggml_tensor* x,
struct ggml_tensor* w,
struct ggml_tensor* b,
int s0 = 1,
int s1 = 1,
int p0 = 0,
int p1 = 0,
int d0 = 1,
int d1 = 1) {
x = ggml_conv_2d(ctx, w, x, s0, s1, p0, p1, d0, d1);
if (b != NULL) {
b = ggml_reshape_4d(ctx, b, 1, 1, b->ne[0], 1);
x = ggml_add(ctx, x, b);
}
return x;
}
__STATIC_INLINE__ struct ggml_tensor* ggml_nn_layer_norm(struct ggml_context* ctx,
struct ggml_tensor* x,
struct ggml_tensor* w,
struct ggml_tensor* b,
float eps = EPS) {
x = ggml_norm(ctx, x, eps);
x = ggml_mul(ctx, x, w);
x = ggml_add(ctx, x, b);
return x;
}
__STATIC_INLINE__ struct ggml_tensor* ggml_nn_group_norm(struct ggml_context* ctx,
struct ggml_tensor* x,
struct ggml_tensor* w,
struct ggml_tensor* b,
int num_groups = 32) {
if (ggml_n_dims(x) >= 3) {
w = ggml_reshape_4d(ctx, w, 1, 1, w->ne[0], 1);
b = ggml_reshape_4d(ctx, b, 1, 1, b->ne[0], 1);
}
x = ggml_group_norm(ctx, x, num_groups);
x = ggml_mul(ctx, x, w);
x = ggml_add(ctx, x, b);
return x;
}
__STATIC_INLINE__ void ggml_backend_tensor_get_and_sync(ggml_backend_t backend, const struct ggml_tensor* tensor, void* data, size_t offset, size_t size) {
#ifdef SD_USE_CUBLAS
ggml_backend_tensor_get_async(backend, tensor, data, offset, size);
ggml_backend_synchronize(backend);
#else
ggml_backend_tensor_get(tensor, data, offset, size);
#endif
}
__STATIC_INLINE__ float ggml_backend_tensor_get_f32(ggml_tensor* tensor) {
GGML_ASSERT(tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_F16);
float value;
if (tensor->type == GGML_TYPE_F32) {
ggml_backend_tensor_get(tensor, &value, 0, sizeof(value));
} else { // GGML_TYPE_F16
ggml_fp16_t f16_value;
ggml_backend_tensor_get(tensor, &f16_value, 0, sizeof(f16_value));
value = ggml_fp16_to_fp32(f16_value);
}
return value;
}
// Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
__STATIC_INLINE__ void set_timestep_embedding(struct ggml_tensor* timesteps, struct ggml_tensor* embedding, int dim, int max_period = 10000) {
// timesteps: [N,]
// embedding: [dim, N]
int half = dim / 2;
std::vector<float> freqs(half);
for (int i = 0; i < half; ++i) {
freqs[i] = (float)std::exp(-std::log(max_period) * i / half);
}
for (int i = 0; i < timesteps->ne[0]; ++i) {
for (int j = 0; j < half; ++j) {
float arg = ggml_get_f32_1d(timesteps, i) * freqs[j];
ggml_tensor_set_f32(embedding, std::cos(arg), j, i);
ggml_tensor_set_f32(embedding, std::sin(arg), j + half, i);
}
if (dim % 2 != 0) {
*(float*)((char*)embedding->data + i * embedding->nb[1] + dim * embedding->nb[0]) = 0;
}
}
}
__STATIC_INLINE__ struct ggml_tensor* new_timestep_embedding(struct ggml_context* ctx,
struct ggml_allocr* allocr,
struct ggml_tensor* timesteps,
int dim,
int max_period = 10000) {
// timesteps: [N,]
// embedding: [dim, N]
int acutual_dim = dim;
if (dim % 2 != 0) {
acutual_dim = dim + 1;
}
struct ggml_tensor* embedding = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, acutual_dim, timesteps->ne[0]);
if (allocr != NULL) {
ggml_allocr_alloc(allocr, embedding);
}
if (allocr != NULL && !ggml_allocr_is_measure(allocr)) {
set_timestep_embedding(timesteps, embedding, dim, max_period);
}
return embedding;
}
struct GGMLModule {
typedef std::function<struct ggml_cgraph*()> get_graph_cb_t;
std::string name = "ggml module";
struct ggml_context* params_ctx = NULL;
size_t params_buffer_size = 0;
size_t compute_buffer_size = 0;
ggml_backend_buffer_t params_buffer = NULL;
ggml_backend_buffer_t compute_buffer = NULL; // for compute
struct ggml_allocr* compute_allocr = NULL;
ggml_type wtype = GGML_TYPE_F32;
ggml_backend_t backend = NULL;
virtual size_t calculate_mem_size() = 0;
virtual size_t get_num_tensors() = 0;
bool alloc_params_buffer(ggml_backend_t backend_, ggml_type wtype_ = GGML_TYPE_F32) {
backend = backend_;
wtype = wtype_;
params_buffer_size = 10 * 1024 * 1024; // 10 MB, for padding
params_buffer_size += calculate_mem_size();
size_t num_tensors = get_num_tensors();
LOG_DEBUG("%s params backend buffer size = % 6.2f MB (%i tensors)",
name.c_str(), params_buffer_size / (1024.0 * 1024.0), num_tensors);
struct ggml_init_params params;
params.mem_size = static_cast<size_t>(num_tensors * ggml_tensor_overhead()) + 1 * 1024 * 1024;
params.mem_buffer = NULL;
params.no_alloc = true;
// LOG_DEBUG("mem_size %u ", params.mem_size);
params_ctx = ggml_init(params);
if (!params_ctx) {
LOG_ERROR("ggml_init() failed");
return false;
}
params_buffer = ggml_backend_alloc_buffer(backend, params_buffer_size);
return true;
}
void free_params_buffer() {
if (params_ctx != NULL) {
ggml_free(params_ctx);
params_ctx = NULL;
}
if (params_buffer != NULL) {
ggml_backend_buffer_free(params_buffer);
params_buffer = NULL;
}
}
~GGMLModule() {
free_params_buffer();
}
void alloc_compute_buffer(get_graph_cb_t get_graph) {
if (compute_buffer_size == 0) {
// alignment required by the backend
compute_allocr = ggml_allocr_new_measure_from_backend(backend);
struct ggml_cgraph* gf = get_graph();
// compute the required memory
compute_buffer_size = ggml_allocr_alloc_graph(compute_allocr, gf) + 1024 * 1024;
// recreate the allocator with the required memory
ggml_allocr_free(compute_allocr);
LOG_DEBUG("%s compute buffer size: %.2f MB", name.c_str(), compute_buffer_size / 1024.0 / 1024.0);
}
compute_buffer = ggml_backend_alloc_buffer(backend, compute_buffer_size);
compute_allocr = ggml_allocr_new_from_buffer(compute_buffer);
}
void compute(get_graph_cb_t get_graph, int n_threads, struct ggml_tensor* output = NULL) {
ggml_allocr_reset(compute_allocr);
struct ggml_cgraph* gf = get_graph();
ggml_allocr_alloc_graph(compute_allocr, gf);
if (ggml_backend_is_cpu(backend)) {
ggml_backend_cpu_set_n_threads(backend, n_threads);
}
#ifdef SD_USE_METAL
if (ggml_backend_is_metal(backend)) {
ggml_backend_metal_set_n_cb(backend, n_threads);
}
#endif
ggml_backend_graph_compute(backend, gf);
#ifdef GGML_PERF
ggml_graph_print(gf);
#endif
if (output != NULL) {
ggml_backend_tensor_get_and_sync(backend, gf->nodes[gf->n_nodes - 1], output->data, 0, ggml_nbytes(output));
}
}
void free_compute_buffer() {
ggml_allocr_free(compute_allocr);
ggml_backend_buffer_free(compute_buffer);
compute_allocr = NULL;
compute_buffer_size = 0;
}
};
#endif // __GGML_EXTEND__HPP__