stable-diffusion.cpp/stable-diffusion.h
旺旺碎冰冰 0e64238e4c
feat: implement the complete bpe function (#119)
* implement the complete bpe function
---------

Co-authored-by: leejet <leejet714@gmail.com>
2023-12-23 12:11:07 +08:00

79 lines
1.7 KiB
C++

#ifndef __STABLE_DIFFUSION_H__
#define __STABLE_DIFFUSION_H__
#include <memory>
#include <string>
#include <vector>
#include "ggml/ggml.h"
enum RNGType {
STD_DEFAULT_RNG,
CUDA_RNG
};
enum SampleMethod {
EULER_A,
EULER,
HEUN,
DPM2,
DPMPP2S_A,
DPMPP2M,
DPMPP2Mv2,
LCM,
N_SAMPLE_METHODS
};
enum Schedule {
DEFAULT,
DISCRETE,
KARRAS,
N_SCHEDULES
};
class StableDiffusionGGML;
class StableDiffusion {
private:
std::shared_ptr<StableDiffusionGGML> sd;
public:
StableDiffusion(int n_threads = -1,
bool vae_decode_only = false,
std::string taesd_path = "",
bool free_params_immediately = false,
std::string lora_model_dir = "",
RNGType rng_type = STD_DEFAULT_RNG);
bool load_from_file(const std::string& model_path,
const std::string& vae_path,
ggml_type wtype,
Schedule d = DEFAULT);
std::vector<uint8_t*> txt2img(
std::string prompt,
std::string negative_prompt,
float cfg_scale,
int width,
int height,
SampleMethod sample_method,
int sample_steps,
int64_t seed,
int batch_count);
std::vector<uint8_t*> img2img(
const uint8_t* init_img_data,
std::string prompt,
std::string negative_prompt,
float cfg_scale,
int width,
int height,
SampleMethod sample_method,
int sample_steps,
float strength,
int64_t seed);
};
std::string sd_get_system_info();
#endif // __STABLE_DIFFUSION_H__