import os import sys import numpy as np import torch from diffusers.utils import load_image # pip install insightface==0.7.3 from insightface.app import FaceAnalysis from insightface.data import get_image as ins_get_image from safetensors.torch import save_file ### # https://github.com/cubiq/ComfyUI_IPAdapter_plus/issues/165#issue-2055829543 ### class FaceAnalysis2(FaceAnalysis): # NOTE: allows setting det_size for each detection call. # the model allows it but the wrapping code from insightface # doesn't show it, and people end up loading duplicate models # for different sizes where there is absolutely no need to def get(self, img, max_num=0, det_size=(640, 640)): if det_size is not None: self.det_model.input_size = det_size return super().get(img, max_num) def analyze_faces(face_analysis: FaceAnalysis, img_data: np.ndarray, det_size=(640, 640)): # NOTE: try detect faces, if no faces detected, lower det_size until it does detection_sizes = [None] + [(size, size) for size in range(640, 256, -64)] + [(256, 256)] for size in detection_sizes: faces = face_analysis.get(img_data, det_size=size) if len(faces) > 0: return faces return [] if __name__ == "__main__": #face_detector = FaceAnalysis2(providers=['CUDAExecutionProvider'], allowed_modules=['detection', 'recognition']) face_detector = FaceAnalysis2(providers=['CPUExecutionProvider'], allowed_modules=['detection', 'recognition']) face_detector.prepare(ctx_id=0, det_size=(640, 640)) #input_folder_name = './scarletthead_woman' input_folder_name = sys.argv[1] image_basename_list = os.listdir(input_folder_name) image_path_list = sorted([os.path.join(input_folder_name, basename) for basename in image_basename_list]) input_id_images = [] for image_path in image_path_list: input_id_images.append(load_image(image_path)) id_embed_list = [] for img in input_id_images: img = np.array(img) img = img[:, :, ::-1] faces = analyze_faces(face_detector, img) if len(faces) > 0: id_embed_list.append(torch.from_numpy((faces[0]['embedding']))) if len(id_embed_list) == 0: raise ValueError(f"No face detected in input image pool") id_embeds = torch.stack(id_embed_list) # for r in id_embeds: # print(r) # #torch.save(id_embeds, input_folder_name+'/id_embeds.pt'); # weights = dict() # weights["id_embeds"] = id_embeds # save_file(weights, input_folder_name+'/id_embeds.safetensors') binary_data = id_embeds.numpy().tobytes() two = 4 zero = 0 one = 1 tensor_name = "id_embeds" # Write binary data to a file with open(input_folder_name+'/id_embeds.bin', "wb") as f: f.write(two.to_bytes(4, byteorder='little')) f.write((len(tensor_name)).to_bytes(4, byteorder='little')) f.write(zero.to_bytes(4, byteorder='little')) f.write((id_embeds.shape[1]).to_bytes(4, byteorder='little')) f.write((id_embeds.shape[0]).to_bytes(4, byteorder='little')) f.write(one.to_bytes(4, byteorder='little')) f.write(one.to_bytes(4, byteorder='little')) f.write(tensor_name.encode('ascii')) f.write(binary_data)