feat: add AYS(Align Your Steps) scheduler (#241)

Added NVIDEA's new "Align Your Steps" style scheduler in accordance with their
quick start guide. Currently has handling for SD1.5, SDXL, and SVD, using the
noise levels from their paper to generate the sigma values. Can be selected
using the --schedule ays command line switch. Updates the main.cpp help
message and README to reflect this option, also they now inform the user
of the --color switch as well.

---------

Co-authored-by: leejet <leejet714@gmail.com>
This commit is contained in:
Grauho 2024-04-29 11:21:32 -04:00 committed by GitHub
parent 760cfaa618
commit ce1bcc74a6
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 152 additions and 3 deletions

View File

@ -190,12 +190,13 @@ arguments:
--rng {std_default, cuda} RNG (default: cuda)
-s SEED, --seed SEED RNG seed (default: 42, use random seed for < 0)
-b, --batch-count COUNT number of images to generate.
--schedule {discrete, karras} Denoiser sigma schedule (default: discrete)
--schedule {discrete, karras, ays} Denoiser sigma schedule (default: discrete)
--clip-skip N ignore last layers of CLIP network; 1 ignores none, 2 ignores one layer (default: -1)
<= 0 represents unspecified, will be 1 for SD1.x, 2 for SD2.x
--vae-tiling process vae in tiles to reduce memory usage
--control-net-cpu keep controlnet in cpu (for low vram)
--canny apply canny preprocessor (edge detection)
--color colors the logging tags according to level
-v, --verbose print extra info
```

View File

@ -13,6 +13,7 @@ struct SigmaSchedule {
float alphas_cumprod[TIMESTEPS];
float sigmas[TIMESTEPS];
float log_sigmas[TIMESTEPS];
int version = 0;
virtual std::vector<float> get_sigmas(uint32_t n) = 0;
@ -75,6 +76,144 @@ struct DiscreteSchedule : SigmaSchedule {
}
};
/*
https://research.nvidia.com/labs/toronto-ai/AlignYourSteps/howto.html
*/
struct AYSSchedule : SigmaSchedule {
/* interp and linear_interp adapted from dpilger26's NumCpp library:
* https://github.com/dpilger26/NumCpp/tree/5e40aab74d14e257d65d3dc385c9ff9e2120c60e */
constexpr double interp(double left, double right, double perc) noexcept {
return (left * (1. - perc)) + (right * perc);
}
/* This will make the assumption that the reference x and y values are
* already sorted in ascending order because they are being generated as
* such in the calling function */
std::vector<double> linear_interp(std::vector<float> new_x,
const std::vector<float> ref_x,
const std::vector<float> ref_y) {
const size_t len_x = new_x.size();
size_t i = 0;
size_t j = 0;
std::vector<double> new_y(len_x);
if (ref_x.size() != ref_y.size()) {
LOG_ERROR("Linear Interoplation Failed: length mismatch");
return new_y;
}
/* serves as the bounds checking for the below while loop */
if ((new_x[0] < ref_x[0]) || (new_x[new_x.size() - 1] > ref_x[ref_x.size() - 1])) {
LOG_ERROR("Linear Interpolation Failed: bad bounds");
return new_y;
}
while (i < len_x) {
if ((ref_x[j] > new_x[i]) || (new_x[i] > ref_x[j + 1])) {
j++;
continue;
}
const double perc = static_cast<double>(new_x[i] - ref_x[j]) / static_cast<double>(ref_x[j + 1] - ref_x[j]);
new_y[i] = interp(ref_y[j], ref_y[j + 1], perc);
i++;
}
return new_y;
}
std::vector<float> linear_space(const float start, const float end, const size_t num_points) {
std::vector<float> result(num_points);
const float inc = (end - start) / (static_cast<float>(num_points - 1));
if (num_points > 0) {
result[0] = start;
for (size_t i = 1; i < num_points; i++) {
result[i] = result[i - 1] + inc;
}
}
return result;
}
std::vector<float> log_linear_interpolation(std::vector<float> sigma_in,
const size_t new_len) {
const size_t s_len = sigma_in.size();
std::vector<float> x_vals = linear_space(0.f, 1.f, s_len);
std::vector<float> y_vals(s_len);
/* Reverses the input array to be ascending instead of descending,
* also hits it with a log, it is log-linear interpolation after all */
for (size_t i = 0; i < s_len; i++) {
y_vals[i] = std::log(sigma_in[s_len - i - 1]);
}
std::vector<float> new_x_vals = linear_space(0.f, 1.f, new_len);
std::vector<double> new_y_vals = linear_interp(new_x_vals, x_vals, y_vals);
std::vector<float> results(new_len);
for (size_t i = 0; i < new_len; i++) {
results[i] = static_cast<float>(std::exp(new_y_vals[new_len - i - 1]));
}
return results;
}
std::vector<float> get_sigmas(uint32_t len) {
const std::vector<float> noise_levels[] = {
/* SD1.5 */
{14.6146412293f, 6.4745760956f, 3.8636745985f, 2.6946151520f,
1.8841921177f, 1.3943805092f, 0.9642583904f, 0.6523686016f,
0.3977456272f, 0.1515232662f, 0.0291671582f},
/* SDXL */
{14.6146412293f, 6.3184485287f, 3.7681790315f, 2.1811480769f,
1.3405244945f, 0.8620721141f, 0.5550693289f, 0.3798540708f,
0.2332364134f, 0.1114188177f, 0.0291671582f},
/* SVD */
{700.00f, 54.5f, 15.886f, 7.977f, 4.248f, 1.789f, 0.981f, 0.403f,
0.173f, 0.034f, 0.002f},
};
std::vector<float> inputs;
std::vector<float> results(len + 1);
switch (version) {
case VERSION_2_x: /* fallthrough */
LOG_WARN("AYS not designed for SD2.X models");
case VERSION_1_x:
LOG_INFO("AYS using SD1.5 noise levels");
inputs = noise_levels[0];
break;
case VERSION_XL:
LOG_INFO("AYS using SDXL noise levels");
inputs = noise_levels[1];
break;
case VERSION_SVD:
LOG_INFO("AYS using SVD noise levels");
inputs = noise_levels[2];
break;
default:
LOG_ERROR("Version not compatable with AYS scheduler");
return results;
}
/* Stretches those pre-calculated reference levels out to the desired
* size using log-linear interpolation */
if ((len + 1) != inputs.size()) {
results = log_linear_interpolation(inputs, len + 1);
} else {
results = inputs;
}
/* Not sure if this is strictly neccessary */
results[len] = 0.0f;
return results;
}
};
struct KarrasSchedule : SigmaSchedule {
std::vector<float> get_sigmas(uint32_t n) {
// These *COULD* be function arguments here,
@ -122,4 +261,4 @@ struct CompVisVDenoiser : public Denoiser {
}
};
#endif // __DENOISER_HPP__
#endif // __DENOISER_HPP__

View File

@ -43,6 +43,7 @@ const char* schedule_str[] = {
"default",
"discrete",
"karras",
"ays",
};
const char* modes_str[] = {
@ -190,12 +191,13 @@ void print_usage(int argc, const char* argv[]) {
printf(" --rng {std_default, cuda} RNG (default: cuda)\n");
printf(" -s SEED, --seed SEED RNG seed (default: 42, use random seed for < 0)\n");
printf(" -b, --batch-count COUNT number of images to generate.\n");
printf(" --schedule {discrete, karras} Denoiser sigma schedule (default: discrete)\n");
printf(" --schedule {discrete, karras, ays} Denoiser sigma schedule (default: discrete)\n");
printf(" --clip-skip N ignore last layers of CLIP network; 1 ignores none, 2 ignores one layer (default: -1)\n");
printf(" <= 0 represents unspecified, will be 1 for SD1.x, 2 for SD2.x\n");
printf(" --vae-tiling process vae in tiles to reduce memory usage\n");
printf(" --control-net-cpu keep controlnet in cpu (for low vram)\n");
printf(" --canny apply canny preprocessor (edge detection)\n");
printf(" --color Colors the logging tags according to level\n");
printf(" -v, --verbose print extra info\n");
}

View File

@ -890,6 +890,7 @@ bool ModelLoader::init_from_safetensors_file(const std::string& file_path, const
// ggml/src/ggml.c:2745
if (n_dims < 1 || n_dims > GGML_MAX_DIMS) {
LOG_ERROR("skip tensor '%s' with n_dims %d", name.c_str(), n_dims);
continue;
}

View File

@ -450,6 +450,11 @@ public:
LOG_INFO("running with Karras schedule");
denoiser->schedule = std::make_shared<KarrasSchedule>();
break;
case AYS:
LOG_INFO("Running with Align-Your-Steps schedule");
denoiser->schedule = std::make_shared<AYSSchedule>();
denoiser->schedule->version = version;
break;
case DEFAULT:
// Don't touch anything.
break;

View File

@ -49,6 +49,7 @@ enum schedule_t {
DEFAULT,
DISCRETE,
KARRAS,
AYS,
N_SCHEDULES
};