feat: flexible model architecture for dit models (Flux & SD3) (#490)

* Refactor: wtype per tensor

* Fix default args

* refactor: fix flux

* Refactor photmaker v2 support

* unet: refactor the refactoring

* Refactor: fix controlnet and tae

* refactor: upscaler

* Refactor: fix runtime type override

* upscaler: use fp16 again

* Refactor: Flexible sd3 arch

* Refactor: Flexible Flux arch

* format code

---------

Co-authored-by: leejet <leejet714@gmail.com>
This commit is contained in:
stduhpf 2024-11-30 07:18:53 +01:00 committed by GitHub
parent 4570715727
commit 7ce63e740c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
21 changed files with 317 additions and 271 deletions

View File

@ -545,9 +545,12 @@ protected:
int64_t vocab_size; int64_t vocab_size;
int64_t num_positions; int64_t num_positions;
void init_params(struct ggml_context* ctx, ggml_type wtype) { void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix = "") {
params["token_embedding.weight"] = ggml_new_tensor_2d(ctx, wtype, embed_dim, vocab_size); enum ggml_type token_wtype = (tensor_types.find(prefix + "token_embedding.weight") != tensor_types.end()) ? tensor_types[prefix + "token_embedding.weight"] : GGML_TYPE_F32;
params["position_embedding.weight"] = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, embed_dim, num_positions); enum ggml_type position_wtype = GGML_TYPE_F32; //(tensor_types.find(prefix + "position_embedding.weight") != tensor_types.end()) ? tensor_types[prefix + "position_embedding.weight"] : GGML_TYPE_F32;
params["token_embedding.weight"] = ggml_new_tensor_2d(ctx, token_wtype, embed_dim, vocab_size);
params["position_embedding.weight"] = ggml_new_tensor_2d(ctx, position_wtype, embed_dim, num_positions);
} }
public: public:
@ -591,11 +594,14 @@ protected:
int64_t image_size; int64_t image_size;
int64_t num_patches; int64_t num_patches;
int64_t num_positions; int64_t num_positions;
void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix = "") {
enum ggml_type patch_wtype = GGML_TYPE_F16; // tensor_types.find(prefix + "patch_embedding.weight") != tensor_types.end() ? tensor_types[prefix + "patch_embedding.weight"] : GGML_TYPE_F16;
enum ggml_type class_wtype = GGML_TYPE_F32; // tensor_types.find(prefix + "class_embedding") != tensor_types.end() ? tensor_types[prefix + "class_embedding"] : GGML_TYPE_F32;
enum ggml_type position_wtype = GGML_TYPE_F32; // tensor_types.find(prefix + "position_embedding.weight") != tensor_types.end() ? tensor_types[prefix + "position_embedding.weight"] : GGML_TYPE_F32;
void init_params(struct ggml_context* ctx, ggml_type wtype) { params["patch_embedding.weight"] = ggml_new_tensor_4d(ctx, patch_wtype, patch_size, patch_size, num_channels, embed_dim);
params["patch_embedding.weight"] = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, patch_size, patch_size, num_channels, embed_dim); params["class_embedding"] = ggml_new_tensor_1d(ctx, class_wtype, embed_dim);
params["class_embedding"] = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, embed_dim); params["position_embedding.weight"] = ggml_new_tensor_2d(ctx, position_wtype, embed_dim, num_positions);
params["position_embedding.weight"] = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, embed_dim, num_positions);
} }
public: public:
@ -651,9 +657,10 @@ enum CLIPVersion {
class CLIPTextModel : public GGMLBlock { class CLIPTextModel : public GGMLBlock {
protected: protected:
void init_params(struct ggml_context* ctx, ggml_type wtype) { void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix = "") {
if (version == OPEN_CLIP_VIT_BIGG_14) { if (version == OPEN_CLIP_VIT_BIGG_14) {
params["text_projection"] = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, projection_dim, hidden_size); enum ggml_type wtype = GGML_TYPE_F32; // tensor_types.find(prefix + "text_projection") != tensor_types.end() ? tensor_types[prefix + "text_projection"] : GGML_TYPE_F32;
params["text_projection"] = ggml_new_tensor_2d(ctx, wtype, projection_dim, hidden_size);
} }
} }
@ -798,9 +805,9 @@ protected:
int64_t out_features; int64_t out_features;
bool transpose_weight; bool transpose_weight;
void init_params(struct ggml_context* ctx, ggml_type wtype) { void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix = "") {
enum ggml_type wtype = tensor_types.find(prefix + "weight") != tensor_types.end() ? tensor_types[prefix + "weight"] : GGML_TYPE_F32;
if (transpose_weight) { if (transpose_weight) {
LOG_ERROR("transpose_weight");
params["weight"] = ggml_new_tensor_2d(ctx, wtype, out_features, in_features); params["weight"] = ggml_new_tensor_2d(ctx, wtype, out_features, in_features);
} else { } else {
params["weight"] = ggml_new_tensor_2d(ctx, wtype, in_features, out_features); params["weight"] = ggml_new_tensor_2d(ctx, wtype, in_features, out_features);
@ -861,12 +868,13 @@ struct CLIPTextModelRunner : public GGMLRunner {
CLIPTextModel model; CLIPTextModel model;
CLIPTextModelRunner(ggml_backend_t backend, CLIPTextModelRunner(ggml_backend_t backend,
ggml_type wtype, std::map<std::string, enum ggml_type>& tensor_types,
const std::string prefix,
CLIPVersion version = OPENAI_CLIP_VIT_L_14, CLIPVersion version = OPENAI_CLIP_VIT_L_14,
int clip_skip_value = 1, int clip_skip_value = 1,
bool with_final_ln = true) bool with_final_ln = true)
: GGMLRunner(backend, wtype), model(version, clip_skip_value, with_final_ln) { : GGMLRunner(backend), model(version, clip_skip_value, with_final_ln) {
model.init(params_ctx, wtype); model.init(params_ctx, tensor_types, prefix);
} }
std::string get_desc() { std::string get_desc() {
@ -908,13 +916,13 @@ struct CLIPTextModelRunner : public GGMLRunner {
struct ggml_tensor* embeddings = NULL; struct ggml_tensor* embeddings = NULL;
if (num_custom_embeddings > 0 && custom_embeddings_data != NULL) { if (num_custom_embeddings > 0 && custom_embeddings_data != NULL) {
auto custom_embeddings = ggml_new_tensor_2d(compute_ctx, auto token_embed_weight = model.get_token_embed_weight();
wtype, auto custom_embeddings = ggml_new_tensor_2d(compute_ctx,
model.hidden_size, token_embed_weight->type,
num_custom_embeddings); model.hidden_size,
num_custom_embeddings);
set_backend_tensor_data(custom_embeddings, custom_embeddings_data); set_backend_tensor_data(custom_embeddings, custom_embeddings_data);
auto token_embed_weight = model.get_token_embed_weight();
// concatenate custom embeddings // concatenate custom embeddings
embeddings = ggml_concat(compute_ctx, token_embed_weight, custom_embeddings, 1); embeddings = ggml_concat(compute_ctx, token_embed_weight, custom_embeddings, 1);
} }

View File

@ -182,9 +182,11 @@ protected:
int64_t dim_in; int64_t dim_in;
int64_t dim_out; int64_t dim_out;
void init_params(struct ggml_context* ctx, ggml_type wtype) { void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, std::string prefix = "") {
params["proj.weight"] = ggml_new_tensor_2d(ctx, wtype, dim_in, dim_out * 2); enum ggml_type wtype = (tensor_types.find(prefix + "proj.weight") != tensor_types.end()) ? tensor_types[prefix + "proj.weight"] : GGML_TYPE_F32;
params["proj.bias"] = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, dim_out * 2); enum ggml_type bias_wtype = GGML_TYPE_F32; //(tensor_types.find(prefix + "proj.bias") != tensor_types.end()) ? tensor_types[prefix + "proj.bias"] : GGML_TYPE_F32;
params["proj.weight"] = ggml_new_tensor_2d(ctx, wtype, dim_in, dim_out * 2);
params["proj.bias"] = ggml_new_tensor_1d(ctx, bias_wtype, dim_out * 2);
} }
public: public:
@ -438,8 +440,10 @@ public:
class AlphaBlender : public GGMLBlock { class AlphaBlender : public GGMLBlock {
protected: protected:
void init_params(struct ggml_context* ctx, ggml_type wtype) { void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, std::string prefix = "") {
params["mix_factor"] = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1); // Get the type of the "mix_factor" tensor from the input tensors map with the specified prefix
enum ggml_type wtype = GGML_TYPE_F32; //(tensor_types.ypes.find(prefix + "mix_factor") != tensor_types.end()) ? tensor_types[prefix + "mix_factor"] : GGML_TYPE_F32;
params["mix_factor"] = ggml_new_tensor_1d(ctx, wtype, 1);
} }
float get_alpha() { float get_alpha() {

View File

@ -46,7 +46,6 @@ struct FrozenCLIPEmbedderWithCustomWords : public Conditioner {
SDVersion version = VERSION_SD1; SDVersion version = VERSION_SD1;
PMVersion pm_version = PM_VERSION_1; PMVersion pm_version = PM_VERSION_1;
CLIPTokenizer tokenizer; CLIPTokenizer tokenizer;
ggml_type wtype;
std::shared_ptr<CLIPTextModelRunner> text_model; std::shared_ptr<CLIPTextModelRunner> text_model;
std::shared_ptr<CLIPTextModelRunner> text_model2; std::shared_ptr<CLIPTextModelRunner> text_model2;
@ -57,12 +56,12 @@ struct FrozenCLIPEmbedderWithCustomWords : public Conditioner {
std::vector<std::string> readed_embeddings; std::vector<std::string> readed_embeddings;
FrozenCLIPEmbedderWithCustomWords(ggml_backend_t backend, FrozenCLIPEmbedderWithCustomWords(ggml_backend_t backend,
ggml_type wtype, std::map<std::string, enum ggml_type>& tensor_types,
const std::string& embd_dir, const std::string& embd_dir,
SDVersion version = VERSION_SD1, SDVersion version = VERSION_SD1,
PMVersion pv = PM_VERSION_1, PMVersion pv = PM_VERSION_1,
int clip_skip = -1) int clip_skip = -1)
: version(version), pm_version(pv), tokenizer(version == VERSION_SD2 ? 0 : 49407), embd_dir(embd_dir), wtype(wtype) { : version(version), pm_version(pv), tokenizer(version == VERSION_SD2 ? 0 : 49407), embd_dir(embd_dir) {
if (clip_skip <= 0) { if (clip_skip <= 0) {
clip_skip = 1; clip_skip = 1;
if (version == VERSION_SD2 || version == VERSION_SDXL) { if (version == VERSION_SD2 || version == VERSION_SDXL) {
@ -70,12 +69,12 @@ struct FrozenCLIPEmbedderWithCustomWords : public Conditioner {
} }
} }
if (version == VERSION_SD1) { if (version == VERSION_SD1) {
text_model = std::make_shared<CLIPTextModelRunner>(backend, wtype, OPENAI_CLIP_VIT_L_14, clip_skip); text_model = std::make_shared<CLIPTextModelRunner>(backend, tensor_types, "cond_stage_model.transformer.text_model", OPENAI_CLIP_VIT_L_14, clip_skip);
} else if (version == VERSION_SD2) { } else if (version == VERSION_SD2) {
text_model = std::make_shared<CLIPTextModelRunner>(backend, wtype, OPEN_CLIP_VIT_H_14, clip_skip); text_model = std::make_shared<CLIPTextModelRunner>(backend, tensor_types, "cond_stage_model.transformer.text_model", OPEN_CLIP_VIT_H_14, clip_skip);
} else if (version == VERSION_SDXL) { } else if (version == VERSION_SDXL) {
text_model = std::make_shared<CLIPTextModelRunner>(backend, wtype, OPENAI_CLIP_VIT_L_14, clip_skip, false); text_model = std::make_shared<CLIPTextModelRunner>(backend, tensor_types, "cond_stage_model.transformer.text_model", OPENAI_CLIP_VIT_L_14, clip_skip, false);
text_model2 = std::make_shared<CLIPTextModelRunner>(backend, wtype, OPEN_CLIP_VIT_BIGG_14, clip_skip, false); text_model2 = std::make_shared<CLIPTextModelRunner>(backend, tensor_types, "cond_stage_model.1.transformer.text_model", OPEN_CLIP_VIT_BIGG_14, clip_skip, false);
} }
} }
@ -138,14 +137,14 @@ struct FrozenCLIPEmbedderWithCustomWords : public Conditioner {
LOG_DEBUG("embedding wrong hidden size, got %i, expected %i", tensor_storage.ne[0], hidden_size); LOG_DEBUG("embedding wrong hidden size, got %i, expected %i", tensor_storage.ne[0], hidden_size);
return false; return false;
} }
embd = ggml_new_tensor_2d(embd_ctx, wtype, hidden_size, tensor_storage.n_dims > 1 ? tensor_storage.ne[1] : 1); embd = ggml_new_tensor_2d(embd_ctx, tensor_storage.type, hidden_size, tensor_storage.n_dims > 1 ? tensor_storage.ne[1] : 1);
*dst_tensor = embd; *dst_tensor = embd;
return true; return true;
}; };
model_loader.load_tensors(on_load, NULL); model_loader.load_tensors(on_load, NULL);
readed_embeddings.push_back(embd_name); readed_embeddings.push_back(embd_name);
token_embed_custom.resize(token_embed_custom.size() + ggml_nbytes(embd)); token_embed_custom.resize(token_embed_custom.size() + ggml_nbytes(embd));
memcpy((void*)(token_embed_custom.data() + num_custom_embeddings * hidden_size * ggml_type_size(wtype)), memcpy((void*)(token_embed_custom.data() + num_custom_embeddings * hidden_size * ggml_type_size(embd->type)),
embd->data, embd->data,
ggml_nbytes(embd)); ggml_nbytes(embd));
for (int i = 0; i < embd->ne[1]; i++) { for (int i = 0; i < embd->ne[1]; i++) {
@ -590,9 +589,9 @@ struct FrozenCLIPEmbedderWithCustomWords : public Conditioner {
struct FrozenCLIPVisionEmbedder : public GGMLRunner { struct FrozenCLIPVisionEmbedder : public GGMLRunner {
CLIPVisionModelProjection vision_model; CLIPVisionModelProjection vision_model;
FrozenCLIPVisionEmbedder(ggml_backend_t backend, ggml_type wtype) FrozenCLIPVisionEmbedder(ggml_backend_t backend, std::map<std::string, enum ggml_type>& tensor_types)
: vision_model(OPEN_CLIP_VIT_H_14, true), GGMLRunner(backend, wtype) { : vision_model(OPEN_CLIP_VIT_H_14, true), GGMLRunner(backend) {
vision_model.init(params_ctx, wtype); vision_model.init(params_ctx, tensor_types, "cond_stage_model.transformer");
} }
std::string get_desc() { std::string get_desc() {
@ -627,7 +626,6 @@ struct FrozenCLIPVisionEmbedder : public GGMLRunner {
}; };
struct SD3CLIPEmbedder : public Conditioner { struct SD3CLIPEmbedder : public Conditioner {
ggml_type wtype;
CLIPTokenizer clip_l_tokenizer; CLIPTokenizer clip_l_tokenizer;
CLIPTokenizer clip_g_tokenizer; CLIPTokenizer clip_g_tokenizer;
T5UniGramTokenizer t5_tokenizer; T5UniGramTokenizer t5_tokenizer;
@ -636,15 +634,15 @@ struct SD3CLIPEmbedder : public Conditioner {
std::shared_ptr<T5Runner> t5; std::shared_ptr<T5Runner> t5;
SD3CLIPEmbedder(ggml_backend_t backend, SD3CLIPEmbedder(ggml_backend_t backend,
ggml_type wtype, std::map<std::string, enum ggml_type>& tensor_types,
int clip_skip = -1) int clip_skip = -1)
: wtype(wtype), clip_g_tokenizer(0) { : clip_g_tokenizer(0) {
if (clip_skip <= 0) { if (clip_skip <= 0) {
clip_skip = 2; clip_skip = 2;
} }
clip_l = std::make_shared<CLIPTextModelRunner>(backend, wtype, OPENAI_CLIP_VIT_L_14, clip_skip, false); clip_l = std::make_shared<CLIPTextModelRunner>(backend, tensor_types, "text_encoders.clip_l.transformer.text_model", OPENAI_CLIP_VIT_L_14, clip_skip, false);
clip_g = std::make_shared<CLIPTextModelRunner>(backend, wtype, OPEN_CLIP_VIT_BIGG_14, clip_skip, false); clip_g = std::make_shared<CLIPTextModelRunner>(backend, tensor_types, "text_encoders.clip_g.transformer.text_model", OPEN_CLIP_VIT_BIGG_14, clip_skip, false);
t5 = std::make_shared<T5Runner>(backend, wtype); t5 = std::make_shared<T5Runner>(backend, tensor_types, "text_encoders.t5xxl.transformer");
} }
void set_clip_skip(int clip_skip) { void set_clip_skip(int clip_skip) {
@ -974,21 +972,19 @@ struct SD3CLIPEmbedder : public Conditioner {
}; };
struct FluxCLIPEmbedder : public Conditioner { struct FluxCLIPEmbedder : public Conditioner {
ggml_type wtype;
CLIPTokenizer clip_l_tokenizer; CLIPTokenizer clip_l_tokenizer;
T5UniGramTokenizer t5_tokenizer; T5UniGramTokenizer t5_tokenizer;
std::shared_ptr<CLIPTextModelRunner> clip_l; std::shared_ptr<CLIPTextModelRunner> clip_l;
std::shared_ptr<T5Runner> t5; std::shared_ptr<T5Runner> t5;
FluxCLIPEmbedder(ggml_backend_t backend, FluxCLIPEmbedder(ggml_backend_t backend,
ggml_type wtype, std::map<std::string, enum ggml_type>& tensor_types,
int clip_skip = -1) int clip_skip = -1) {
: wtype(wtype) {
if (clip_skip <= 0) { if (clip_skip <= 0) {
clip_skip = 2; clip_skip = 2;
} }
clip_l = std::make_shared<CLIPTextModelRunner>(backend, wtype, OPENAI_CLIP_VIT_L_14, clip_skip, true); clip_l = std::make_shared<CLIPTextModelRunner>(backend, tensor_types, "text_encoders.clip_l.transformer.text_model", OPENAI_CLIP_VIT_L_14, clip_skip, true);
t5 = std::make_shared<T5Runner>(backend, wtype); t5 = std::make_shared<T5Runner>(backend, tensor_types, "text_encoders.t5xxl.transformer");
} }
void set_clip_skip(int clip_skip) { void set_clip_skip(int clip_skip) {

View File

@ -317,10 +317,10 @@ struct ControlNet : public GGMLRunner {
bool guided_hint_cached = false; bool guided_hint_cached = false;
ControlNet(ggml_backend_t backend, ControlNet(ggml_backend_t backend,
ggml_type wtype, std::map<std::string, enum ggml_type>& tensor_types,
SDVersion version = VERSION_SD1) SDVersion version = VERSION_SD1)
: GGMLRunner(backend, wtype), control_net(version) { : GGMLRunner(backend), control_net(version) {
control_net.init(params_ctx, wtype); control_net.init(params_ctx, tensor_types, "");
} }
~ControlNet() { ~ControlNet() {

View File

@ -31,10 +31,10 @@ struct UNetModel : public DiffusionModel {
UNetModelRunner unet; UNetModelRunner unet;
UNetModel(ggml_backend_t backend, UNetModel(ggml_backend_t backend,
ggml_type wtype, std::map<std::string, enum ggml_type>& tensor_types,
SDVersion version = VERSION_SD1, SDVersion version = VERSION_SD1,
bool flash_attn = false) bool flash_attn = false)
: unet(backend, wtype, version, flash_attn) { : unet(backend, tensor_types, "model.diffusion_model", version, flash_attn) {
} }
void alloc_params_buffer() { void alloc_params_buffer() {
@ -83,9 +83,8 @@ struct MMDiTModel : public DiffusionModel {
MMDiTRunner mmdit; MMDiTRunner mmdit;
MMDiTModel(ggml_backend_t backend, MMDiTModel(ggml_backend_t backend,
ggml_type wtype, std::map<std::string, enum ggml_type>& tensor_types)
SDVersion version = VERSION_SD3_2B) : mmdit(backend, tensor_types, "model.diffusion_model") {
: mmdit(backend, wtype, version) {
} }
void alloc_params_buffer() { void alloc_params_buffer() {
@ -133,10 +132,9 @@ struct FluxModel : public DiffusionModel {
Flux::FluxRunner flux; Flux::FluxRunner flux;
FluxModel(ggml_backend_t backend, FluxModel(ggml_backend_t backend,
ggml_type wtype, std::map<std::string, enum ggml_type>& tensor_types,
SDVersion version = VERSION_FLUX_DEV, bool flash_attn = false)
bool flash_attn = false) : flux(backend, tensor_types, "model.diffusion_model", flash_attn) {
: flux(backend, wtype, version, flash_attn) {
} }
void alloc_params_buffer() { void alloc_params_buffer() {

View File

@ -142,10 +142,9 @@ struct ESRGAN : public GGMLRunner {
int scale = 4; int scale = 4;
int tile_size = 128; // avoid cuda OOM for 4gb VRAM int tile_size = 128; // avoid cuda OOM for 4gb VRAM
ESRGAN(ggml_backend_t backend, ESRGAN(ggml_backend_t backend, std::map<std::string, enum ggml_type>& tensor_types)
ggml_type wtype) : GGMLRunner(backend) {
: GGMLRunner(backend, wtype) { rrdb_net.init(params_ctx, tensor_types, "");
rrdb_net.init(params_ctx, wtype);
} }
std::string get_desc() { std::string get_desc() {

View File

@ -1010,8 +1010,7 @@ int main(int argc, const char* argv[]) {
int upscale_factor = 4; // unused for RealESRGAN_x4plus_anime_6B.pth int upscale_factor = 4; // unused for RealESRGAN_x4plus_anime_6B.pth
if (params.esrgan_path.size() > 0 && params.upscale_repeats > 0) { if (params.esrgan_path.size() > 0 && params.upscale_repeats > 0) {
upscaler_ctx_t* upscaler_ctx = new_upscaler_ctx(params.esrgan_path.c_str(), upscaler_ctx_t* upscaler_ctx = new_upscaler_ctx(params.esrgan_path.c_str(),
params.n_threads, params.n_threads);
params.wtype);
if (upscaler_ctx == NULL) { if (upscaler_ctx == NULL) {
printf("new_upscaler_ctx failed\n"); printf("new_upscaler_ctx failed\n");

View File

@ -35,8 +35,9 @@ namespace Flux {
int64_t hidden_size; int64_t hidden_size;
float eps; float eps;
void init_params(struct ggml_context* ctx, ggml_type wtype) { void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix = "") {
params["scale"] = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hidden_size); ggml_type wtype = GGML_TYPE_F32; //(tensor_types.find(prefix + "scale") != tensor_types.end()) ? tensor_types[prefix + "scale"] : GGML_TYPE_F32;
params["scale"] = ggml_new_tensor_1d(ctx, wtype, hidden_size);
} }
public: public:
@ -823,25 +824,55 @@ namespace Flux {
}; };
struct FluxRunner : public GGMLRunner { struct FluxRunner : public GGMLRunner {
static std::map<std::string, enum ggml_type> empty_tensor_types;
public: public:
FluxParams flux_params; FluxParams flux_params;
Flux flux; Flux flux;
std::vector<float> pe_vec; // for cache std::vector<float> pe_vec; // for cache
FluxRunner(ggml_backend_t backend, FluxRunner(ggml_backend_t backend,
ggml_type wtype, std::map<std::string, enum ggml_type>& tensor_types = empty_tensor_types,
SDVersion version = VERSION_FLUX_DEV, const std::string prefix = "",
bool flash_attn = false) bool flash_attn = false)
: GGMLRunner(backend, wtype) { : GGMLRunner(backend) {
flux_params.flash_attn = flash_attn; flux_params.flash_attn = flash_attn;
if (version == VERSION_FLUX_SCHNELL) { flux_params.guidance_embed = false;
flux_params.guidance_embed = false; flux_params.depth = 0;
flux_params.depth_single_blocks = 0;
for (auto pair : tensor_types) {
std::string tensor_name = pair.first;
if (tensor_name.find("model.diffusion_model.") == std::string::npos)
continue;
if (tensor_name.find("guidance_in.in_layer.weight") != std::string::npos) {
// not schnell
flux_params.guidance_embed = true;
}
size_t db = tensor_name.find("double_blocks.");
if (db != std::string::npos) {
tensor_name = tensor_name.substr(db); // remove prefix
int block_depth = atoi(tensor_name.substr(14, tensor_name.find(".", 14)).c_str());
if (block_depth + 1 > flux_params.depth) {
flux_params.depth = block_depth + 1;
}
}
size_t sb = tensor_name.find("single_blocks.");
if (sb != std::string::npos) {
tensor_name = tensor_name.substr(sb); // remove prefix
int block_depth = atoi(tensor_name.substr(14, tensor_name.find(".", 14)).c_str());
if (block_depth + 1 > flux_params.depth_single_blocks) {
flux_params.depth_single_blocks = block_depth + 1;
}
}
} }
if (version == VERSION_FLUX_LITE) {
flux_params.depth = 8; LOG_INFO("Flux blocks: %d double, %d single", flux_params.depth, flux_params.depth_single_blocks);
if (!flux_params.guidance_embed) {
LOG_INFO("Flux guidance is disabled (Schnell mode)");
} }
flux = Flux(flux_params); flux = Flux(flux_params);
flux.init(params_ctx, wtype); flux.init(params_ctx, tensor_types, prefix);
} }
std::string get_desc() { std::string get_desc() {
@ -959,7 +990,7 @@ namespace Flux {
// ggml_backend_t backend = ggml_backend_cuda_init(0); // ggml_backend_t backend = ggml_backend_cuda_init(0);
ggml_backend_t backend = ggml_backend_cpu_init(); ggml_backend_t backend = ggml_backend_cpu_init();
ggml_type model_data_type = GGML_TYPE_Q8_0; ggml_type model_data_type = GGML_TYPE_Q8_0;
std::shared_ptr<FluxRunner> flux = std::shared_ptr<FluxRunner>(new FluxRunner(backend, model_data_type)); std::shared_ptr<FluxRunner> flux = std::shared_ptr<FluxRunner>(new FluxRunner(backend));
{ {
LOG_INFO("loading from '%s'", file_path.c_str()); LOG_INFO("loading from '%s'", file_path.c_str());

View File

@ -25,6 +25,8 @@
#include "ggml-cpu.h" #include "ggml-cpu.h"
#include "ggml.h" #include "ggml.h"
#include "model.h"
#ifdef SD_USE_CUBLAS #ifdef SD_USE_CUBLAS
#include "ggml-cuda.h" #include "ggml-cuda.h"
#endif #endif
@ -673,13 +675,13 @@ __STATIC_INLINE__ struct ggml_tensor* ggml_nn_attention(struct ggml_context* ctx
#if defined(SD_USE_FLASH_ATTENTION) && !defined(SD_USE_CUBLAS) && !defined(SD_USE_METAL) && !defined(SD_USE_VULKAN) && !defined(SD_USE_SYCL) #if defined(SD_USE_FLASH_ATTENTION) && !defined(SD_USE_CUBLAS) && !defined(SD_USE_METAL) && !defined(SD_USE_VULKAN) && !defined(SD_USE_SYCL)
struct ggml_tensor* kqv = ggml_flash_attn(ctx, q, k, v, false); // [N * n_head, n_token, d_head] struct ggml_tensor* kqv = ggml_flash_attn(ctx, q, k, v, false); // [N * n_head, n_token, d_head]
#else #else
float d_head = (float)q->ne[0]; float d_head = (float)q->ne[0];
struct ggml_tensor* kq = ggml_mul_mat(ctx, k, q); // [N * n_head, n_token, n_k] struct ggml_tensor* kq = ggml_mul_mat(ctx, k, q); // [N * n_head, n_token, n_k]
kq = ggml_scale_inplace(ctx, kq, 1.0f / sqrt(d_head)); kq = ggml_scale_inplace(ctx, kq, 1.0f / sqrt(d_head));
if (mask) { if (mask) {
kq = ggml_diag_mask_inf_inplace(ctx, kq, 0); kq = ggml_diag_mask_inf_inplace(ctx, kq, 0);
} }
kq = ggml_soft_max_inplace(ctx, kq); kq = ggml_soft_max_inplace(ctx, kq);
struct ggml_tensor* kqv = ggml_mul_mat(ctx, v, kq); // [N * n_head, n_token, d_head] struct ggml_tensor* kqv = ggml_mul_mat(ctx, v, kq); // [N * n_head, n_token, d_head]
#endif #endif
return kqv; return kqv;
@ -964,7 +966,6 @@ protected:
std::map<struct ggml_tensor*, const void*> backend_tensor_data_map; std::map<struct ggml_tensor*, const void*> backend_tensor_data_map;
ggml_type wtype = GGML_TYPE_F32;
ggml_backend_t backend = NULL; ggml_backend_t backend = NULL;
void alloc_params_ctx() { void alloc_params_ctx() {
@ -1040,8 +1041,8 @@ protected:
public: public:
virtual std::string get_desc() = 0; virtual std::string get_desc() = 0;
GGMLRunner(ggml_backend_t backend, ggml_type wtype = GGML_TYPE_F32) GGMLRunner(ggml_backend_t backend)
: backend(backend), wtype(wtype) { : backend(backend) {
alloc_params_ctx(); alloc_params_ctx();
} }
@ -1170,20 +1171,22 @@ protected:
GGMLBlockMap blocks; GGMLBlockMap blocks;
ParameterMap params; ParameterMap params;
void init_blocks(struct ggml_context* ctx, ggml_type wtype) { void init_blocks(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix = "") {
for (auto& pair : blocks) { for (auto& pair : blocks) {
auto& block = pair.second; auto& block = pair.second;
block->init(ctx, tensor_types, prefix + pair.first);
block->init(ctx, wtype);
} }
} }
virtual void init_params(struct ggml_context* ctx, ggml_type wtype) {} virtual void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix = "") {}
public: public:
void init(struct ggml_context* ctx, ggml_type wtype) { void init(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, std::string prefix = "") {
init_blocks(ctx, wtype); if (prefix.size() > 0) {
init_params(ctx, wtype); prefix = prefix + ".";
}
init_blocks(ctx, tensor_types, prefix);
init_params(ctx, tensor_types, prefix);
} }
size_t get_params_num() { size_t get_params_num() {
@ -1239,13 +1242,15 @@ protected:
bool bias; bool bias;
bool force_f32; bool force_f32;
void init_params(struct ggml_context* ctx, ggml_type wtype) { void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix = "") {
enum ggml_type wtype = (tensor_types.find(prefix + "weight") != tensor_types.end()) ? tensor_types[prefix + "weight"] : GGML_TYPE_F32;
if (in_features % ggml_blck_size(wtype) != 0 || force_f32) { if (in_features % ggml_blck_size(wtype) != 0 || force_f32) {
wtype = GGML_TYPE_F32; wtype = GGML_TYPE_F32;
} }
params["weight"] = ggml_new_tensor_2d(ctx, wtype, in_features, out_features); params["weight"] = ggml_new_tensor_2d(ctx, wtype, in_features, out_features);
if (bias) { if (bias) {
params["bias"] = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, out_features); enum ggml_type wtype = GGML_TYPE_F32; //(tensor_types.ypes.find(prefix + "bias") != tensor_types.end()) ? tensor_types[prefix + "bias"] : GGML_TYPE_F32;
params["bias"] = ggml_new_tensor_1d(ctx, wtype, out_features);
} }
} }
@ -1273,9 +1278,9 @@ class Embedding : public UnaryBlock {
protected: protected:
int64_t embedding_dim; int64_t embedding_dim;
int64_t num_embeddings; int64_t num_embeddings;
void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix = "") {
void init_params(struct ggml_context* ctx, ggml_type wtype) { enum ggml_type wtype = (tensor_types.find(prefix + "weight") != tensor_types.end()) ? tensor_types[prefix + "weight"] : GGML_TYPE_F32;
params["weight"] = ggml_new_tensor_2d(ctx, wtype, embedding_dim, num_embeddings); params["weight"] = ggml_new_tensor_2d(ctx, wtype, embedding_dim, num_embeddings);
} }
public: public:
@ -1313,10 +1318,12 @@ protected:
std::pair<int, int> dilation; std::pair<int, int> dilation;
bool bias; bool bias;
void init_params(struct ggml_context* ctx, ggml_type wtype) { void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix = "") {
params["weight"] = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kernel_size.second, kernel_size.first, in_channels, out_channels); enum ggml_type wtype = GGML_TYPE_F16; //(tensor_types.find(prefix + "weight") != tensor_types.end()) ? tensor_types[prefix + "weight"] : GGML_TYPE_F16;
params["weight"] = ggml_new_tensor_4d(ctx, wtype, kernel_size.second, kernel_size.first, in_channels, out_channels);
if (bias) { if (bias) {
params["bias"] = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, out_channels); enum ggml_type wtype = GGML_TYPE_F32; // (tensor_types.find(prefix + "bias") != tensor_types.end()) ? tensor_types[prefix + "bias"] : GGML_TYPE_F32;
params["bias"] = ggml_new_tensor_1d(ctx, wtype, out_channels);
} }
} }
@ -1356,10 +1363,12 @@ protected:
int64_t dilation; int64_t dilation;
bool bias; bool bias;
void init_params(struct ggml_context* ctx, ggml_type wtype) { void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix = "") {
params["weight"] = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, 1, kernel_size, in_channels, out_channels); // 5d => 4d enum ggml_type wtype = GGML_TYPE_F16; //(tensor_types.find(prefix + "weight") != tensor_types.end()) ? tensor_types[prefix + "weight"] : GGML_TYPE_F16;
params["weight"] = ggml_new_tensor_4d(ctx, wtype, 1, kernel_size, in_channels, out_channels); // 5d => 4d
if (bias) { if (bias) {
params["bias"] = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, out_channels); enum ggml_type wtype = GGML_TYPE_F32; //(tensor_types.find(prefix + "bias") != tensor_types.end()) ? tensor_types[prefix + "bias"] : GGML_TYPE_F32;
params["bias"] = ggml_new_tensor_1d(ctx, wtype, out_channels);
} }
} }
@ -1398,11 +1407,13 @@ protected:
bool elementwise_affine; bool elementwise_affine;
bool bias; bool bias;
void init_params(struct ggml_context* ctx, ggml_type wtype) { void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix = "") {
if (elementwise_affine) { if (elementwise_affine) {
params["weight"] = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, normalized_shape); enum ggml_type wtype = GGML_TYPE_F32; //(tensor_types.ypes.find(prefix + "weight") != tensor_types.end()) ? tensor_types[prefix + "weight"] : GGML_TYPE_F32;
params["weight"] = ggml_new_tensor_1d(ctx, wtype, normalized_shape);
if (bias) { if (bias) {
params["bias"] = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, normalized_shape); enum ggml_type wtype = GGML_TYPE_F32; //(tensor_types.ypes.find(prefix + "bias") != tensor_types.end()) ? tensor_types[prefix + "bias"] : GGML_TYPE_F32;
params["bias"] = ggml_new_tensor_1d(ctx, wtype, normalized_shape);
} }
} }
} }
@ -1438,10 +1449,12 @@ protected:
float eps; float eps;
bool affine; bool affine;
void init_params(struct ggml_context* ctx, ggml_type wtype) { void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix = "") {
if (affine) { if (affine) {
params["weight"] = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, num_channels); enum ggml_type wtype = GGML_TYPE_F32; //(tensor_types.find(prefix + "weight") != tensor_types.end()) ? tensor_types[prefix + "weight"] : GGML_TYPE_F32;
params["bias"] = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, num_channels); enum ggml_type bias_wtype = GGML_TYPE_F32; //(tensor_types.find(prefix + "bias") != tensor_types.end()) ? tensor_types[prefix + "bias"] : GGML_TYPE_F32;
params["weight"] = ggml_new_tensor_1d(ctx, wtype, num_channels);
params["bias"] = ggml_new_tensor_1d(ctx, bias_wtype, num_channels);
} }
} }

View File

@ -16,10 +16,9 @@ struct LoraModel : public GGMLRunner {
ggml_tensor* zero_index = NULL; ggml_tensor* zero_index = NULL;
LoraModel(ggml_backend_t backend, LoraModel(ggml_backend_t backend,
ggml_type wtype,
const std::string& file_path = "", const std::string& file_path = "",
const std::string& prefix = "") const std::string prefix = "")
: file_path(file_path), GGMLRunner(backend, wtype) { : file_path(file_path), GGMLRunner(backend) {
if (!model_loader.init_from_file(file_path, prefix)) { if (!model_loader.init_from_file(file_path, prefix)) {
load_failed = true; load_failed = true;
} }

101
mmdit.hpp
View File

@ -147,8 +147,9 @@ protected:
int64_t hidden_size; int64_t hidden_size;
float eps; float eps;
void init_params(struct ggml_context* ctx, ggml_type wtype) { void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, std::string prefix = "") {
params["weight"] = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hidden_size); enum ggml_type wtype = GGML_TYPE_F32; //(tensor_types.find(prefix + "weight") != tensor_types.end()) ? tensor_types[prefix + "weight"] : GGML_TYPE_F32;
params["weight"] = ggml_new_tensor_1d(ctx, wtype, hidden_size);
} }
public: public:
@ -636,7 +637,6 @@ public:
struct MMDiT : public GGMLBlock { struct MMDiT : public GGMLBlock {
// Diffusion model with a Transformer backbone. // Diffusion model with a Transformer backbone.
protected: protected:
SDVersion version = VERSION_SD3_2B;
int64_t input_size = -1; int64_t input_size = -1;
int64_t patch_size = 2; int64_t patch_size = 2;
int64_t in_channels = 16; int64_t in_channels = 16;
@ -652,13 +652,13 @@ protected:
int64_t hidden_size; int64_t hidden_size;
std::string qk_norm; std::string qk_norm;
void init_params(struct ggml_context* ctx, ggml_type wtype) { void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, std::string prefix = "") {
params["pos_embed"] = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hidden_size, num_patchs, 1); enum ggml_type wtype = GGML_TYPE_F32; //(tensor_types.find(prefix + "pos_embed") != tensor_types.end()) ? tensor_types[prefix + "pos_embed"] : GGML_TYPE_F32;
params["pos_embed"] = ggml_new_tensor_3d(ctx, wtype, hidden_size, num_patchs, 1);
} }
public: public:
MMDiT(SDVersion version = VERSION_SD3_2B) MMDiT(std::map<std::string, enum ggml_type>& tensor_types) {
: version(version) {
// input_size is always None // input_size is always None
// learn_sigma is always False // learn_sigma is always False
// register_length is alwalys 0 // register_length is alwalys 0
@ -670,48 +670,44 @@ public:
// pos_embed_scaling_factor is not used // pos_embed_scaling_factor is not used
// pos_embed_offset is not used // pos_embed_offset is not used
// context_embedder_config is always {'target': 'torch.nn.Linear', 'params': {'in_features': 4096, 'out_features': 1536}} // context_embedder_config is always {'target': 'torch.nn.Linear', 'params': {'in_features': 4096, 'out_features': 1536}}
if (version == VERSION_SD3_2B) {
input_size = -1; // read tensors from tensor_types
patch_size = 2; for (auto pair : tensor_types) {
in_channels = 16; std::string tensor_name = pair.first;
depth = 24; if (tensor_name.find("model.diffusion_model.") == std::string::npos)
mlp_ratio = 4.0f; continue;
adm_in_channels = 2048; size_t jb = tensor_name.find("joint_blocks.");
out_channels = 16; if (jb != std::string::npos) {
pos_embed_max_size = 192; tensor_name = tensor_name.substr(jb); // remove prefix
num_patchs = 36864; // 192 * 192 int block_depth = atoi(tensor_name.substr(13, tensor_name.find(".", 13)).c_str());
context_size = 4096; if (block_depth + 1 > depth) {
context_embedder_out_dim = 1536; depth = block_depth + 1;
} else if (version == VERSION_SD3_5_8B) { }
input_size = -1; if (tensor_name.find("attn.ln") != std::string::npos) {
patch_size = 2; if (tensor_name.find(".bias") != std::string::npos) {
in_channels = 16; qk_norm = "ln";
depth = 38; } else {
mlp_ratio = 4.0f; qk_norm = "rms";
adm_in_channels = 2048; }
out_channels = 16; }
pos_embed_max_size = 192; if (tensor_name.find("attn2") != std::string::npos) {
num_patchs = 36864; // 192 * 192 if (block_depth > d_self) {
context_size = 4096; d_self = block_depth;
context_embedder_out_dim = 2432; }
qk_norm = "rms"; }
} else if (version == VERSION_SD3_5_2B) { }
input_size = -1;
patch_size = 2;
in_channels = 16;
depth = 24;
d_self = 12;
mlp_ratio = 4.0f;
adm_in_channels = 2048;
out_channels = 16;
pos_embed_max_size = 384;
num_patchs = 147456;
context_size = 4096;
context_embedder_out_dim = 1536;
qk_norm = "rms";
} }
if (d_self >= 0) {
pos_embed_max_size *= 2;
num_patchs *= 4;
}
LOG_INFO("MMDiT layers: %d (including %d MMDiT-x layers)", depth, d_self + 1);
int64_t default_out_channels = in_channels; int64_t default_out_channels = in_channels;
hidden_size = 64 * depth; hidden_size = 64 * depth;
context_embedder_out_dim = 64 * depth;
int64_t num_heads = depth; int64_t num_heads = depth;
blocks["x_embedder"] = std::shared_ptr<GGMLBlock>(new PatchEmbed(input_size, patch_size, in_channels, hidden_size, true)); blocks["x_embedder"] = std::shared_ptr<GGMLBlock>(new PatchEmbed(input_size, patch_size, in_channels, hidden_size, true));
@ -870,15 +866,16 @@ public:
return x; return x;
} }
}; };
struct MMDiTRunner : public GGMLRunner { struct MMDiTRunner : public GGMLRunner {
MMDiT mmdit; MMDiT mmdit;
static std::map<std::string, enum ggml_type> empty_tensor_types;
MMDiTRunner(ggml_backend_t backend, MMDiTRunner(ggml_backend_t backend,
ggml_type wtype, std::map<std::string, enum ggml_type>& tensor_types = empty_tensor_types,
SDVersion version = VERSION_SD3_2B) const std::string prefix = "")
: GGMLRunner(backend, wtype), mmdit(version) { : GGMLRunner(backend), mmdit(tensor_types) {
mmdit.init(params_ctx, wtype); mmdit.init(params_ctx, tensor_types, prefix);
} }
std::string get_desc() { std::string get_desc() {
@ -975,7 +972,7 @@ struct MMDiTRunner : public GGMLRunner {
// ggml_backend_t backend = ggml_backend_cuda_init(0); // ggml_backend_t backend = ggml_backend_cuda_init(0);
ggml_backend_t backend = ggml_backend_cpu_init(); ggml_backend_t backend = ggml_backend_cpu_init();
ggml_type model_data_type = GGML_TYPE_F16; ggml_type model_data_type = GGML_TYPE_F16;
std::shared_ptr<MMDiTRunner> mmdit = std::shared_ptr<MMDiTRunner>(new MMDiTRunner(backend, model_data_type)); std::shared_ptr<MMDiTRunner> mmdit = std::shared_ptr<MMDiTRunner>(new MMDiTRunner(backend));
{ {
LOG_INFO("loading from '%s'", file_path.c_str()); LOG_INFO("loading from '%s'", file_path.c_str());

View File

@ -927,6 +927,7 @@ bool ModelLoader::init_from_gguf_file(const std::string& file_path, const std::s
GGML_ASSERT(ggml_nbytes(dummy) == tensor_storage.nbytes()); GGML_ASSERT(ggml_nbytes(dummy) == tensor_storage.nbytes());
tensor_storages.push_back(tensor_storage); tensor_storages.push_back(tensor_storage);
tensor_storages_types[tensor_storage.name] = tensor_storage.type;
} }
gguf_free(ctx_gguf_); gguf_free(ctx_gguf_);
@ -1071,6 +1072,7 @@ bool ModelLoader::init_from_safetensors_file(const std::string& file_path, const
} }
tensor_storages.push_back(tensor_storage); tensor_storages.push_back(tensor_storage);
tensor_storages_types[tensor_storage.name] = tensor_storage.type;
// LOG_DEBUG("%s %s", tensor_storage.to_string().c_str(), dtype.c_str()); // LOG_DEBUG("%s %s", tensor_storage.to_string().c_str(), dtype.c_str());
} }
@ -1296,7 +1298,7 @@ bool ModelLoader::parse_data_pkl(uint8_t* buffer,
zip_t* zip, zip_t* zip,
std::string dir, std::string dir,
size_t file_index, size_t file_index,
const std::string& prefix) { const std::string prefix) {
uint8_t* buffer_end = buffer + buffer_size; uint8_t* buffer_end = buffer + buffer_size;
if (buffer[0] == 0x80) { // proto if (buffer[0] == 0x80) { // proto
if (buffer[1] != 2) { if (buffer[1] != 2) {
@ -1401,6 +1403,8 @@ bool ModelLoader::parse_data_pkl(uint8_t* buffer,
// printf(" ZIP got tensor %s \n ", reader.tensor_storage.name.c_str()); // printf(" ZIP got tensor %s \n ", reader.tensor_storage.name.c_str());
reader.tensor_storage.name = prefix + reader.tensor_storage.name; reader.tensor_storage.name = prefix + reader.tensor_storage.name;
tensor_storages.push_back(reader.tensor_storage); tensor_storages.push_back(reader.tensor_storage);
tensor_storages_types[reader.tensor_storage.name] = reader.tensor_storage.type;
// LOG_DEBUG("%s", reader.tensor_storage.name.c_str()); // LOG_DEBUG("%s", reader.tensor_storage.name.c_str());
// reset // reset
reader = PickleTensorReader(); reader = PickleTensorReader();
@ -1455,28 +1459,12 @@ bool ModelLoader::init_from_ckpt_file(const std::string& file_path, const std::s
SDVersion ModelLoader::get_sd_version() { SDVersion ModelLoader::get_sd_version() {
TensorStorage token_embedding_weight; TensorStorage token_embedding_weight;
bool is_flux = false;
bool is_schnell = true;
bool is_lite = true;
bool is_sd3 = false;
for (auto& tensor_storage : tensor_storages) { for (auto& tensor_storage : tensor_storages) {
if (tensor_storage.name.find("model.diffusion_model.guidance_in.in_layer.weight") != std::string::npos) {
is_schnell = false;
}
if (tensor_storage.name.find("model.diffusion_model.double_blocks.") != std::string::npos) { if (tensor_storage.name.find("model.diffusion_model.double_blocks.") != std::string::npos) {
is_flux = true; return VERSION_FLUX;
} }
if (tensor_storage.name.find("model.diffusion_model.double_blocks.8") != std::string::npos) { if (tensor_storage.name.find("model.diffusion_model.joint_blocks.") != std::string::npos) {
is_lite = false; return VERSION_SD3;
}
if (tensor_storage.name.find("joint_blocks.0.x_block.attn2.ln_q.weight") != std::string::npos) {
return VERSION_SD3_5_2B;
}
if (tensor_storage.name.find("joint_blocks.37.x_block.attn.ln_q.weight") != std::string::npos) {
return VERSION_SD3_5_8B;
}
if (tensor_storage.name.find("model.diffusion_model.joint_blocks.23.") != std::string::npos) {
is_sd3 = true;
} }
if (tensor_storage.name.find("conditioner.embedders.1") != std::string::npos) { if (tensor_storage.name.find("conditioner.embedders.1") != std::string::npos) {
return VERSION_SDXL; return VERSION_SDXL;
@ -1498,19 +1486,7 @@ SDVersion ModelLoader::get_sd_version() {
// break; // break;
} }
} }
if (is_flux) {
if (is_schnell) {
GGML_ASSERT(!is_lite);
return VERSION_FLUX_SCHNELL;
} else if (is_lite) {
return VERSION_FLUX_LITE;
} else {
return VERSION_FLUX_DEV;
}
}
if (is_sd3) {
return VERSION_SD3_2B;
}
if (token_embedding_weight.ne[0] == 768) { if (token_embedding_weight.ne[0] == 768) {
return VERSION_SD1; return VERSION_SD1;
} else if (token_embedding_weight.ne[0] == 1024) { } else if (token_embedding_weight.ne[0] == 1024) {
@ -1603,6 +1579,21 @@ ggml_type ModelLoader::get_vae_wtype() {
return GGML_TYPE_COUNT; return GGML_TYPE_COUNT;
} }
void ModelLoader::set_wtype_override(ggml_type wtype, std::string prefix) {
for (auto& pair : tensor_storages_types) {
if (prefix.size() < 1 || pair.first.substr(0, prefix.size()) == prefix) {
for (auto& tensor_storage : tensor_storages) {
if (tensor_storage.name == pair.first) {
if (tensor_should_be_converted(tensor_storage, wtype)) {
pair.second = wtype;
}
break;
}
}
}
}
}
std::string ModelLoader::load_merges() { std::string ModelLoader::load_merges() {
std::string merges_utf8_str(reinterpret_cast<const char*>(merges_utf8_c_str), sizeof(merges_utf8_c_str)); std::string merges_utf8_str(reinterpret_cast<const char*>(merges_utf8_c_str), sizeof(merges_utf8_c_str));
return merges_utf8_str; return merges_utf8_str;

17
model.h
View File

@ -22,24 +22,20 @@ enum SDVersion {
VERSION_SD2, VERSION_SD2,
VERSION_SDXL, VERSION_SDXL,
VERSION_SVD, VERSION_SVD,
VERSION_SD3_2B, VERSION_SD3,
VERSION_FLUX_DEV, VERSION_FLUX,
VERSION_FLUX_SCHNELL,
VERSION_SD3_5_8B,
VERSION_SD3_5_2B,
VERSION_FLUX_LITE,
VERSION_COUNT, VERSION_COUNT,
}; };
static inline bool sd_version_is_flux(SDVersion version) { static inline bool sd_version_is_flux(SDVersion version) {
if (version == VERSION_FLUX_DEV || version == VERSION_FLUX_SCHNELL || version == VERSION_FLUX_LITE) { if (version == VERSION_FLUX) {
return true; return true;
} }
return false; return false;
} }
static inline bool sd_version_is_sd3(SDVersion version) { static inline bool sd_version_is_sd3(SDVersion version) {
if (version == VERSION_SD3_2B || version == VERSION_SD3_5_8B || version == VERSION_SD3_5_2B) { if (version == VERSION_SD3) {
return true; return true;
} }
return false; return false;
@ -170,7 +166,7 @@ protected:
zip_t* zip, zip_t* zip,
std::string dir, std::string dir,
size_t file_index, size_t file_index,
const std::string& prefix); const std::string prefix);
bool init_from_gguf_file(const std::string& file_path, const std::string& prefix = ""); bool init_from_gguf_file(const std::string& file_path, const std::string& prefix = "");
bool init_from_safetensors_file(const std::string& file_path, const std::string& prefix = ""); bool init_from_safetensors_file(const std::string& file_path, const std::string& prefix = "");
@ -178,12 +174,15 @@ protected:
bool init_from_diffusers_file(const std::string& file_path, const std::string& prefix = ""); bool init_from_diffusers_file(const std::string& file_path, const std::string& prefix = "");
public: public:
std::map<std::string, enum ggml_type> tensor_storages_types;
bool init_from_file(const std::string& file_path, const std::string& prefix = ""); bool init_from_file(const std::string& file_path, const std::string& prefix = "");
SDVersion get_sd_version(); SDVersion get_sd_version();
ggml_type get_sd_wtype(); ggml_type get_sd_wtype();
ggml_type get_conditioner_wtype(); ggml_type get_conditioner_wtype();
ggml_type get_diffusion_model_wtype(); ggml_type get_diffusion_model_wtype();
ggml_type get_vae_wtype(); ggml_type get_vae_wtype();
void set_wtype_override(ggml_type wtype, std::string prefix = "");
bool load_tensors(on_new_tensor_cb_t on_new_tensor_cb, ggml_backend_t backend); bool load_tensors(on_new_tensor_cb_t on_new_tensor_cb, ggml_backend_t backend);
bool load_tensors(std::map<std::string, struct ggml_tensor*>& tensors, bool load_tensors(std::map<std::string, struct ggml_tensor*>& tensors,
ggml_backend_t backend, ggml_backend_t backend,

View File

@ -623,15 +623,15 @@ public:
std::vector<float> zeros_right; std::vector<float> zeros_right;
public: public:
PhotoMakerIDEncoder(ggml_backend_t backend, ggml_type wtype, SDVersion version = VERSION_SDXL, PMVersion pm_v = PM_VERSION_1, float sty = 20.f) PhotoMakerIDEncoder(ggml_backend_t backend, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix, SDVersion version = VERSION_SDXL, PMVersion pm_v = PM_VERSION_1, float sty = 20.f)
: GGMLRunner(backend, wtype), : GGMLRunner(backend),
version(version), version(version),
pm_version(pm_v), pm_version(pm_v),
style_strength(sty) { style_strength(sty) {
if (pm_version == PM_VERSION_1) { if (pm_version == PM_VERSION_1) {
id_encoder.init(params_ctx, wtype); id_encoder.init(params_ctx, tensor_types, prefix);
} else if (pm_version == PM_VERSION_2) { } else if (pm_version == PM_VERSION_2) {
id_encoder2.init(params_ctx, wtype); id_encoder2.init(params_ctx, tensor_types, prefix);
} }
} }
@ -780,11 +780,10 @@ struct PhotoMakerIDEmbed : public GGMLRunner {
bool applied = false; bool applied = false;
PhotoMakerIDEmbed(ggml_backend_t backend, PhotoMakerIDEmbed(ggml_backend_t backend,
ggml_type wtype,
ModelLoader* ml, ModelLoader* ml,
const std::string& file_path = "", const std::string& file_path = "",
const std::string& prefix = "") const std::string& prefix = "")
: file_path(file_path), GGMLRunner(backend, wtype), model_loader(ml) { : file_path(file_path), GGMLRunner(backend), model_loader(ml) {
if (!model_loader->init_from_file(file_path, prefix)) { if (!model_loader->init_from_file(file_path, prefix)) {
load_failed = true; load_failed = true;
} }

View File

@ -29,12 +29,8 @@ const char* model_version_to_str[] = {
"SD 2.x", "SD 2.x",
"SDXL", "SDXL",
"SVD", "SVD",
"SD3 2B", "SD3.x",
"Flux Dev", "Flux"};
"Flux Schnell",
"SD3.5 8B",
"SD3.5 2B",
"Flux Lite 8B"};
const char* sampling_methods_str[] = { const char* sampling_methods_str[] = {
"Euler A", "Euler A",
@ -264,16 +260,18 @@ public:
conditioner_wtype = wtype; conditioner_wtype = wtype;
diffusion_model_wtype = wtype; diffusion_model_wtype = wtype;
vae_wtype = wtype; vae_wtype = wtype;
model_loader.set_wtype_override(wtype);
} }
if (version == VERSION_SDXL) { if (version == VERSION_SDXL) {
vae_wtype = GGML_TYPE_F32; vae_wtype = GGML_TYPE_F32;
model_loader.set_wtype_override(GGML_TYPE_F32, "vae.");
} }
LOG_INFO("Weight type: %s", ggml_type_name(model_wtype)); LOG_INFO("Weight type: %s", model_wtype != SD_TYPE_COUNT ? ggml_type_name(model_wtype) : "??");
LOG_INFO("Conditioner weight type: %s", ggml_type_name(conditioner_wtype)); LOG_INFO("Conditioner weight type: %s", conditioner_wtype != SD_TYPE_COUNT ? ggml_type_name(conditioner_wtype) : "??");
LOG_INFO("Diffusion model weight type: %s", ggml_type_name(diffusion_model_wtype)); LOG_INFO("Diffusion model weight type: %s", diffusion_model_wtype != SD_TYPE_COUNT ? ggml_type_name(diffusion_model_wtype) : "??");
LOG_INFO("VAE weight type: %s", ggml_type_name(vae_wtype)); LOG_INFO("VAE weight type: %s", vae_wtype != SD_TYPE_COUNT ? ggml_type_name(vae_wtype) : "??");
LOG_DEBUG("ggml tensor size = %d bytes", (int)sizeof(ggml_tensor)); LOG_DEBUG("ggml tensor size = %d bytes", (int)sizeof(ggml_tensor));
@ -294,15 +292,15 @@ public:
} }
if (version == VERSION_SVD) { if (version == VERSION_SVD) {
clip_vision = std::make_shared<FrozenCLIPVisionEmbedder>(backend, conditioner_wtype); clip_vision = std::make_shared<FrozenCLIPVisionEmbedder>(backend, model_loader.tensor_storages_types);
clip_vision->alloc_params_buffer(); clip_vision->alloc_params_buffer();
clip_vision->get_param_tensors(tensors); clip_vision->get_param_tensors(tensors);
diffusion_model = std::make_shared<UNetModel>(backend, diffusion_model_wtype, version); diffusion_model = std::make_shared<UNetModel>(backend, model_loader.tensor_storages_types, version);
diffusion_model->alloc_params_buffer(); diffusion_model->alloc_params_buffer();
diffusion_model->get_param_tensors(tensors); diffusion_model->get_param_tensors(tensors);
first_stage_model = std::make_shared<AutoEncoderKL>(backend, vae_wtype, vae_decode_only, true, version); first_stage_model = std::make_shared<AutoEncoderKL>(backend, model_loader.tensor_storages_types, "first_stage_model", vae_decode_only, true, version);
LOG_DEBUG("vae_decode_only %d", vae_decode_only); LOG_DEBUG("vae_decode_only %d", vae_decode_only);
first_stage_model->alloc_params_buffer(); first_stage_model->alloc_params_buffer();
first_stage_model->get_param_tensors(tensors, "first_stage_model"); first_stage_model->get_param_tensors(tensors, "first_stage_model");
@ -327,19 +325,20 @@ public:
if (diffusion_flash_attn) { if (diffusion_flash_attn) {
LOG_WARN("flash attention in this diffusion model is currently unsupported!"); LOG_WARN("flash attention in this diffusion model is currently unsupported!");
} }
cond_stage_model = std::make_shared<SD3CLIPEmbedder>(clip_backend, conditioner_wtype); cond_stage_model = std::make_shared<SD3CLIPEmbedder>(clip_backend, model_loader.tensor_storages_types);
diffusion_model = std::make_shared<MMDiTModel>(backend, diffusion_model_wtype, version); diffusion_model = std::make_shared<MMDiTModel>(backend, model_loader.tensor_storages_types);
} else if (sd_version_is_flux(version)) { } else if (sd_version_is_flux(version)) {
cond_stage_model = std::make_shared<FluxCLIPEmbedder>(clip_backend, conditioner_wtype); cond_stage_model = std::make_shared<FluxCLIPEmbedder>(clip_backend, model_loader.tensor_storages_types);
diffusion_model = std::make_shared<FluxModel>(backend, diffusion_model_wtype, version, diffusion_flash_attn); diffusion_model = std::make_shared<FluxModel>(backend, model_loader.tensor_storages_types, diffusion_flash_attn);
} else { } else {
if (id_embeddings_path.find("v2") != std::string::npos) { if (id_embeddings_path.find("v2") != std::string::npos) {
cond_stage_model = std::make_shared<FrozenCLIPEmbedderWithCustomWords>(clip_backend, conditioner_wtype, embeddings_path, version, PM_VERSION_2); cond_stage_model = std::make_shared<FrozenCLIPEmbedderWithCustomWords>(clip_backend, model_loader.tensor_storages_types, embeddings_path, version, PM_VERSION_2);
} else { } else {
cond_stage_model = std::make_shared<FrozenCLIPEmbedderWithCustomWords>(clip_backend, conditioner_wtype, embeddings_path, version); cond_stage_model = std::make_shared<FrozenCLIPEmbedderWithCustomWords>(clip_backend, model_loader.tensor_storages_types, embeddings_path, version);
} }
diffusion_model = std::make_shared<UNetModel>(backend, diffusion_model_wtype, version, diffusion_flash_attn); diffusion_model = std::make_shared<UNetModel>(backend, model_loader.tensor_storages_types, version, diffusion_flash_attn);
} }
cond_stage_model->alloc_params_buffer(); cond_stage_model->alloc_params_buffer();
cond_stage_model->get_param_tensors(tensors); cond_stage_model->get_param_tensors(tensors);
@ -353,11 +352,11 @@ public:
} else { } else {
vae_backend = backend; vae_backend = backend;
} }
first_stage_model = std::make_shared<AutoEncoderKL>(vae_backend, vae_wtype, vae_decode_only, false, version); first_stage_model = std::make_shared<AutoEncoderKL>(vae_backend, model_loader.tensor_storages_types, "first_stage_model", vae_decode_only, false, version);
first_stage_model->alloc_params_buffer(); first_stage_model->alloc_params_buffer();
first_stage_model->get_param_tensors(tensors, "first_stage_model"); first_stage_model->get_param_tensors(tensors, "first_stage_model");
} else { } else {
tae_first_stage = std::make_shared<TinyAutoEncoder>(backend, vae_wtype, vae_decode_only); tae_first_stage = std::make_shared<TinyAutoEncoder>(backend, model_loader.tensor_storages_types, "decoder.layers", vae_decode_only);
} }
// first_stage_model->get_param_tensors(tensors, "first_stage_model."); // first_stage_model->get_param_tensors(tensors, "first_stage_model.");
@ -369,17 +368,17 @@ public:
} else { } else {
controlnet_backend = backend; controlnet_backend = backend;
} }
control_net = std::make_shared<ControlNet>(controlnet_backend, diffusion_model_wtype, version); control_net = std::make_shared<ControlNet>(controlnet_backend, model_loader.tensor_storages_types, version);
} }
if (id_embeddings_path.find("v2") != std::string::npos) { if (id_embeddings_path.find("v2") != std::string::npos) {
pmid_model = std::make_shared<PhotoMakerIDEncoder>(backend, model_wtype, version, PM_VERSION_2); pmid_model = std::make_shared<PhotoMakerIDEncoder>(backend, model_loader.tensor_storages_types, "pmid", version, PM_VERSION_2);
LOG_INFO("using PhotoMaker Version 2"); LOG_INFO("using PhotoMaker Version 2");
} else { } else {
pmid_model = std::make_shared<PhotoMakerIDEncoder>(backend, model_wtype, version); pmid_model = std::make_shared<PhotoMakerIDEncoder>(backend, model_loader.tensor_storages_types, "pmid", version);
} }
if (id_embeddings_path.size() > 0) { if (id_embeddings_path.size() > 0) {
pmid_lora = std::make_shared<LoraModel>(backend, model_wtype, id_embeddings_path, ""); pmid_lora = std::make_shared<LoraModel>(backend, id_embeddings_path, "");
if (!pmid_lora->load_from_file(true)) { if (!pmid_lora->load_from_file(true)) {
LOG_WARN("load photomaker lora tensors from %s failed", id_embeddings_path.c_str()); LOG_WARN("load photomaker lora tensors from %s failed", id_embeddings_path.c_str());
return false; return false;
@ -532,9 +531,12 @@ public:
denoiser = std::make_shared<DiscreteFlowDenoiser>(); denoiser = std::make_shared<DiscreteFlowDenoiser>();
} else if (sd_version_is_flux(version)) { } else if (sd_version_is_flux(version)) {
LOG_INFO("running in Flux FLOW mode"); LOG_INFO("running in Flux FLOW mode");
float shift = 1.15f; float shift = 1.0f; // TODO: validate
if (version == VERSION_FLUX_SCHNELL) { for (auto pair : model_loader.tensor_storages_types) {
shift = 1.0f; // TODO: validate if (pair.first.find("model.diffusion_model.guidance_in.in_layer.weight") != std::string::npos) {
shift = 1.15f;
break;
}
} }
denoiser = std::make_shared<FluxFlowDenoiser>(shift); denoiser = std::make_shared<FluxFlowDenoiser>(shift);
} else if (is_using_v_parameterization) { } else if (is_using_v_parameterization) {
@ -633,7 +635,7 @@ public:
LOG_WARN("can not find %s or %s for lora %s", st_file_path.c_str(), ckpt_file_path.c_str(), lora_name.c_str()); LOG_WARN("can not find %s or %s for lora %s", st_file_path.c_str(), ckpt_file_path.c_str(), lora_name.c_str());
return; return;
} }
LoraModel lora(backend, model_wtype, file_path); LoraModel lora(backend, file_path);
if (!lora.load_from_file()) { if (!lora.load_from_file()) {
LOG_WARN("load lora tensors from %s failed", file_path.c_str()); LOG_WARN("load lora tensors from %s failed", file_path.c_str());
return; return;

View File

@ -215,8 +215,7 @@ SD_API sd_image_t* img2vid(sd_ctx_t* sd_ctx,
typedef struct upscaler_ctx_t upscaler_ctx_t; typedef struct upscaler_ctx_t upscaler_ctx_t;
SD_API upscaler_ctx_t* new_upscaler_ctx(const char* esrgan_path, SD_API upscaler_ctx_t* new_upscaler_ctx(const char* esrgan_path,
int n_threads, int n_threads);
enum sd_type_t wtype);
SD_API void free_upscaler_ctx(upscaler_ctx_t* upscaler_ctx); SD_API void free_upscaler_ctx(upscaler_ctx_t* upscaler_ctx);
SD_API sd_image_t upscale(upscaler_ctx_t* upscaler_ctx, sd_image_t input_image, uint32_t upscale_factor); SD_API sd_image_t upscale(upscaler_ctx_t* upscaler_ctx, sd_image_t input_image, uint32_t upscale_factor);

31
t5.hpp
View File

@ -441,8 +441,9 @@ protected:
int64_t hidden_size; int64_t hidden_size;
float eps; float eps;
void init_params(struct ggml_context* ctx, ggml_type wtype) { void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix = "") {
params["weight"] = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hidden_size); enum ggml_type wtype = GGML_TYPE_F32; //(tensor_types.find(prefix + "weight") != tensor_types.end()) ? tensor_types[prefix + "weight"] : GGML_TYPE_F32;
params["weight"] = ggml_new_tensor_1d(ctx, wtype, hidden_size);
} }
public: public:
@ -717,14 +718,15 @@ struct T5Runner : public GGMLRunner {
std::vector<int> relative_position_bucket_vec; std::vector<int> relative_position_bucket_vec;
T5Runner(ggml_backend_t backend, T5Runner(ggml_backend_t backend,
ggml_type wtype, std::map<std::string, enum ggml_type>& tensor_types,
const std::string prefix,
int64_t num_layers = 24, int64_t num_layers = 24,
int64_t model_dim = 4096, int64_t model_dim = 4096,
int64_t ff_dim = 10240, int64_t ff_dim = 10240,
int64_t num_heads = 64, int64_t num_heads = 64,
int64_t vocab_size = 32128) int64_t vocab_size = 32128)
: GGMLRunner(backend, wtype), model(num_layers, model_dim, ff_dim, num_heads, vocab_size) { : GGMLRunner(backend), model(num_layers, model_dim, ff_dim, num_heads, vocab_size) {
model.init(params_ctx, wtype); model.init(params_ctx, tensor_types, prefix);
} }
std::string get_desc() { std::string get_desc() {
@ -854,14 +856,17 @@ struct T5Embedder {
T5UniGramTokenizer tokenizer; T5UniGramTokenizer tokenizer;
T5Runner model; T5Runner model;
static std::map<std::string, enum ggml_type> empty_tensor_types;
T5Embedder(ggml_backend_t backend, T5Embedder(ggml_backend_t backend,
ggml_type wtype, std::map<std::string, enum ggml_type>& tensor_types = empty_tensor_types,
int64_t num_layers = 24, const std::string prefix = "",
int64_t model_dim = 4096, int64_t num_layers = 24,
int64_t ff_dim = 10240, int64_t model_dim = 4096,
int64_t num_heads = 64, int64_t ff_dim = 10240,
int64_t vocab_size = 32128) int64_t num_heads = 64,
: model(backend, wtype, num_layers, model_dim, ff_dim, num_heads, vocab_size) { int64_t vocab_size = 32128)
: model(backend, tensor_types, prefix, num_layers, model_dim, ff_dim, num_heads, vocab_size) {
} }
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors, const std::string prefix) { void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors, const std::string prefix) {
@ -951,7 +956,7 @@ struct T5Embedder {
// ggml_backend_t backend = ggml_backend_cuda_init(0); // ggml_backend_t backend = ggml_backend_cuda_init(0);
ggml_backend_t backend = ggml_backend_cpu_init(); ggml_backend_t backend = ggml_backend_cpu_init();
ggml_type model_data_type = GGML_TYPE_F32; ggml_type model_data_type = GGML_TYPE_F32;
std::shared_ptr<T5Embedder> t5 = std::shared_ptr<T5Embedder>(new T5Embedder(backend, model_data_type)); std::shared_ptr<T5Embedder> t5 = std::shared_ptr<T5Embedder>(new T5Embedder(backend));
{ {
LOG_INFO("loading from '%s'", file_path.c_str()); LOG_INFO("loading from '%s'", file_path.c_str());

View File

@ -188,12 +188,13 @@ struct TinyAutoEncoder : public GGMLRunner {
bool decode_only = false; bool decode_only = false;
TinyAutoEncoder(ggml_backend_t backend, TinyAutoEncoder(ggml_backend_t backend,
ggml_type wtype, std::map<std::string, enum ggml_type>& tensor_types,
const std::string prefix,
bool decoder_only = true) bool decoder_only = true)
: decode_only(decoder_only), : decode_only(decoder_only),
taesd(decode_only), taesd(decode_only),
GGMLRunner(backend, wtype) { GGMLRunner(backend) {
taesd.init(params_ctx, wtype); taesd.init(params_ctx, tensor_types, prefix);
} }
std::string get_desc() { std::string get_desc() {

View File

@ -532,11 +532,12 @@ struct UNetModelRunner : public GGMLRunner {
UnetModelBlock unet; UnetModelBlock unet;
UNetModelRunner(ggml_backend_t backend, UNetModelRunner(ggml_backend_t backend,
ggml_type wtype, std::map<std::string, enum ggml_type>& tensor_types,
const std::string prefix,
SDVersion version = VERSION_SD1, SDVersion version = VERSION_SD1,
bool flash_attn = false) bool flash_attn = false)
: GGMLRunner(backend, wtype), unet(version, flash_attn) { : GGMLRunner(backend), unet(version, flash_attn) {
unet.init(params_ctx, wtype); unet.init(params_ctx, tensor_types, prefix);
} }
std::string get_desc() { std::string get_desc() {

View File

@ -32,13 +32,17 @@ struct UpscalerGGML {
LOG_DEBUG("Using SYCL backend"); LOG_DEBUG("Using SYCL backend");
backend = ggml_backend_sycl_init(0); backend = ggml_backend_sycl_init(0);
#endif #endif
ModelLoader model_loader;
if (!model_loader.init_from_file(esrgan_path)) {
LOG_ERROR("init model loader from file failed: '%s'", esrgan_path.c_str());
}
model_loader.set_wtype_override(model_data_type);
if (!backend) { if (!backend) {
LOG_DEBUG("Using CPU backend"); LOG_DEBUG("Using CPU backend");
backend = ggml_backend_cpu_init(); backend = ggml_backend_cpu_init();
} }
LOG_INFO("Upscaler weight type: %s", ggml_type_name(model_data_type)); LOG_INFO("Upscaler weight type: %s", ggml_type_name(model_data_type));
esrgan_upscaler = std::make_shared<ESRGAN>(backend, model_data_type); esrgan_upscaler = std::make_shared<ESRGAN>(backend, model_loader.tensor_storages_types);
if (!esrgan_upscaler->load_from_file(esrgan_path)) { if (!esrgan_upscaler->load_from_file(esrgan_path)) {
return false; return false;
} }
@ -96,8 +100,7 @@ struct upscaler_ctx_t {
}; };
upscaler_ctx_t* new_upscaler_ctx(const char* esrgan_path_c_str, upscaler_ctx_t* new_upscaler_ctx(const char* esrgan_path_c_str,
int n_threads, int n_threads) {
enum sd_type_t wtype) {
upscaler_ctx_t* upscaler_ctx = (upscaler_ctx_t*)malloc(sizeof(upscaler_ctx_t)); upscaler_ctx_t* upscaler_ctx = (upscaler_ctx_t*)malloc(sizeof(upscaler_ctx_t));
if (upscaler_ctx == NULL) { if (upscaler_ctx == NULL) {
return NULL; return NULL;

12
vae.hpp
View File

@ -163,8 +163,9 @@ public:
class VideoResnetBlock : public ResnetBlock { class VideoResnetBlock : public ResnetBlock {
protected: protected:
void init_params(struct ggml_context* ctx, ggml_type wtype) { void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix = "") {
params["mix_factor"] = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1); enum ggml_type wtype = (tensor_types.find(prefix + "mix_factor") != tensor_types.end()) ? tensor_types[prefix + "mix_factor"] : GGML_TYPE_F32;
params["mix_factor"] = ggml_new_tensor_1d(ctx, wtype, 1);
} }
float get_alpha() { float get_alpha() {
@ -524,12 +525,13 @@ struct AutoEncoderKL : public GGMLRunner {
AutoencodingEngine ae; AutoencodingEngine ae;
AutoEncoderKL(ggml_backend_t backend, AutoEncoderKL(ggml_backend_t backend,
ggml_type wtype, std::map<std::string, enum ggml_type>& tensor_types,
const std::string prefix,
bool decode_only = false, bool decode_only = false,
bool use_video_decoder = false, bool use_video_decoder = false,
SDVersion version = VERSION_SD1) SDVersion version = VERSION_SD1)
: decode_only(decode_only), ae(decode_only, use_video_decoder, version), GGMLRunner(backend, wtype) { : decode_only(decode_only), ae(decode_only, use_video_decoder, version), GGMLRunner(backend) {
ae.init(params_ctx, wtype); ae.init(params_ctx, tensor_types, prefix);
} }
std::string get_desc() { std::string get_desc() {