diff --git a/stable-diffusion.cpp b/stable-diffusion.cpp index 1110781..0654cf8 100644 --- a/stable-diffusion.cpp +++ b/stable-diffusion.cpp @@ -14,9 +14,9 @@ #include #include "ggml/ggml.h" -#include "stable-diffusion.h" #include "rng.h" #include "rng_philox.h" +#include "stable-diffusion.h" static SDLogLevel log_level = SDLogLevel::INFO; @@ -3122,8 +3122,8 @@ class StableDiffusionGGML { struct ggml_tensor* out = diffusion_model.forward(ctx, x_t, NULL, c, t_emb); ctx_size += ggml_used_mem(ctx) + ggml_used_mem_of_data(ctx); - struct ggml_cgraph diffusion_graph = ggml_build_forward(out); - struct ggml_cplan cplan = ggml_graph_plan(&diffusion_graph, n_threads); + struct ggml_cgraph* diffusion_graph = ggml_build_forward_ctx(ctx, out); + struct ggml_cplan cplan = ggml_graph_plan(diffusion_graph, n_threads); ctx_size += cplan.work_size; LOG_DEBUG("diffusion context need %.2fMB static memory, with work_size needing %.2fMB", @@ -3155,8 +3155,8 @@ class StableDiffusionGGML { struct ggml_tensor* out = diffusion_model.forward(ctx, x_t, NULL, c, t_emb); ggml_hold_dynamic_tensor(out); - struct ggml_cgraph diffusion_graph = ggml_build_forward(out); - struct ggml_cplan cplan = ggml_graph_plan(&diffusion_graph, n_threads); + struct ggml_cgraph* diffusion_graph = ggml_build_forward_ctx(ctx, out); + struct ggml_cplan cplan = ggml_graph_plan(diffusion_graph, n_threads); ggml_set_dynamic(ctx, false); struct ggml_tensor* buf = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cplan.work_size); @@ -3165,7 +3165,7 @@ class StableDiffusionGGML { cplan.work_data = (uint8_t*)buf->data; int64_t t0 = ggml_time_ms(); - ggml_graph_compute(&diffusion_graph, &cplan); + ggml_graph_compute(diffusion_graph, &cplan); double result = 0.f; @@ -3222,8 +3222,8 @@ class StableDiffusionGGML { struct ggml_tensor* hidden_states = cond_stage_model.text_model.forward(ctx, input_ids); - struct ggml_cgraph cond_graph = ggml_build_forward(hidden_states); - struct ggml_cplan cplan = ggml_graph_plan(&cond_graph, n_threads); + struct ggml_cgraph* cond_graph = ggml_build_forward_ctx(ctx, hidden_states); + struct ggml_cplan cplan = ggml_graph_plan(cond_graph, n_threads); ctx_size += cplan.work_size; ctx_size += ggml_used_mem(ctx) + ggml_used_mem_of_data(ctx); @@ -3251,14 +3251,14 @@ class StableDiffusionGGML { ggml_set_dynamic(ctx, params.dynamic); struct ggml_tensor* hidden_states = cond_stage_model.text_model.forward(ctx, input_ids); - struct ggml_cgraph cond_graph = ggml_build_forward(hidden_states); + struct ggml_cgraph* cond_graph = ggml_build_forward_ctx(ctx, hidden_states); LOG_DEBUG("building condition graph completed: %d nodes, %d leafs", - cond_graph.n_nodes, cond_graph.n_leafs); + cond_graph->n_nodes, cond_graph->n_leafs); memcpy(input_ids->data, tokens.data(), tokens.size() * ggml_element_size(input_ids)); int64_t t0 = ggml_time_ms(); - ggml_graph_compute_with_ctx(ctx, &cond_graph, n_threads); + ggml_graph_compute_with_ctx(ctx, cond_graph, n_threads); int64_t t1 = ggml_time_ms(); LOG_DEBUG("computing condition graph completed, taking %.2fs", (t1 - t0) * 1.0f / 1000); @@ -3360,8 +3360,8 @@ class StableDiffusionGGML { struct ggml_tensor* out = diffusion_model.forward(ctx, noised_input, NULL, context, t_emb); ctx_size += ggml_used_mem(ctx) + ggml_used_mem_of_data(ctx); - struct ggml_cgraph diffusion_graph = ggml_build_forward(out); - struct ggml_cplan cplan = ggml_graph_plan(&diffusion_graph, n_threads); + struct ggml_cgraph* diffusion_graph = ggml_build_forward_ctx(ctx, out); + struct ggml_cplan cplan = ggml_graph_plan(diffusion_graph, n_threads); ctx_size += cplan.work_size; LOG_DEBUG("diffusion context need %.2fMB static memory, with work_size needing %.2fMB", @@ -3393,8 +3393,8 @@ class StableDiffusionGGML { struct ggml_tensor* out = diffusion_model.forward(ctx, noised_input, NULL, context, t_emb); ggml_hold_dynamic_tensor(out); - struct ggml_cgraph diffusion_graph = ggml_build_forward(out); - struct ggml_cplan cplan = ggml_graph_plan(&diffusion_graph, n_threads); + struct ggml_cgraph* diffusion_graph = ggml_build_forward_ctx(ctx, out); + struct ggml_cplan cplan = ggml_graph_plan(diffusion_graph, n_threads); ggml_set_dynamic(ctx, false); struct ggml_tensor* buf = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cplan.work_size); @@ -3452,12 +3452,12 @@ class StableDiffusionGGML { if (cfg_scale != 1.0 && uc != NULL) { // uncond copy_ggml_tensor(context, uc); - ggml_graph_compute(&diffusion_graph, &cplan); + ggml_graph_compute(diffusion_graph, &cplan); copy_ggml_tensor(out_uncond, out); // cond copy_ggml_tensor(context, c); - ggml_graph_compute(&diffusion_graph, &cplan); + ggml_graph_compute(diffusion_graph, &cplan); out_cond = out; @@ -3474,7 +3474,7 @@ class StableDiffusionGGML { } else { // cond copy_ggml_tensor(context, c); - ggml_graph_compute(&diffusion_graph, &cplan); + ggml_graph_compute(diffusion_graph, &cplan); } // v = out, eps = out @@ -3607,8 +3607,8 @@ class StableDiffusionGGML { struct ggml_tensor* moments = first_stage_model.encode(ctx, x); ctx_size += ggml_used_mem(ctx) + ggml_used_mem_of_data(ctx); - struct ggml_cgraph vae_graph = ggml_build_forward(moments); - struct ggml_cplan cplan = ggml_graph_plan(&vae_graph, n_threads); + struct ggml_cgraph* vae_graph = ggml_build_forward_ctx(ctx, moments); + struct ggml_cplan cplan = ggml_graph_plan(vae_graph, n_threads); ctx_size += cplan.work_size; LOG_DEBUG("vae context need %.2fMB static memory, with work_size needing %.2fMB", @@ -3632,10 +3632,10 @@ class StableDiffusionGGML { } struct ggml_tensor* moments = first_stage_model.encode(ctx, x); - struct ggml_cgraph vae_graph = ggml_build_forward(moments); + struct ggml_cgraph* vae_graph = ggml_build_forward_ctx(ctx, moments); int64_t t0 = ggml_time_ms(); - ggml_graph_compute_with_ctx(ctx, &vae_graph, n_threads); + ggml_graph_compute_with_ctx(ctx, vae_graph, n_threads); int64_t t1 = ggml_time_ms(); #ifdef GGML_PERF @@ -3736,8 +3736,8 @@ class StableDiffusionGGML { struct ggml_tensor* img = first_stage_model.decoder.forward(ctx, z); ctx_size += ggml_used_mem(ctx) + ggml_used_mem_of_data(ctx); - struct ggml_cgraph vae_graph = ggml_build_forward(img); - struct ggml_cplan cplan = ggml_graph_plan(&vae_graph, n_threads); + struct ggml_cgraph* vae_graph = ggml_build_forward_ctx(ctx, img); + struct ggml_cplan cplan = ggml_graph_plan(vae_graph, n_threads); ctx_size += cplan.work_size; LOG_DEBUG("vae context need %.2fMB static memory, with work_size needing %.2fMB", @@ -3761,10 +3761,10 @@ class StableDiffusionGGML { } struct ggml_tensor* img = first_stage_model.decode(ctx, z); - struct ggml_cgraph vae_graph = ggml_build_forward(img); + struct ggml_cgraph* vae_graph = ggml_build_forward_ctx(ctx, img); int64_t t0 = ggml_time_ms(); - ggml_graph_compute_with_ctx(ctx, &vae_graph, n_threads); + ggml_graph_compute_with_ctx(ctx, vae_graph, n_threads); int64_t t1 = ggml_time_ms(); #ifdef GGML_PERF